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Abstract
The present thesis considers the modelling of gas mixtures via a kinetic description.
Fundamentals about the Boltzmann equation for gas mixtures and the BGK approxi-
mation are presented. Especially, issues in extending these models to gas mixtures
are discussed. A non-reactive two component gas mixture is considered. The two
species mixture is modelled by a system of kinetic BGK equations featuring two inter-
action terms to account for momentum and energy transfer between the two species.
The model presented here contains several models from physicists and engineers as
special cases. Consistency of this model is proven: conservation properties, positivity
of all temperatures and the H-theorem. The form in global equilibrium as Maxwell
distributions is specified. Moreover, the usual macroscopic conservation laws can be
derived.

In the literature, there is another type of BGK model for gas mixtures developed
by Andries, Aoki and Perthame, which contains only one interaction term. In this
thesis, the advantages of these two types of models are discussed and the usefulness
of the model presented here is shown by using this model to determine an unknown
function in the energy exchange of the macroscopic equations for gas mixtures
described in the literature by Dellacherie. In addition, for each of the two models
existence and uniqueness of mild solutions is shown. Moreover, positivity of classical
solutions is proven.

Then, the model presented here is applied to three physical applications: a plasma
consisting of ions and electrons, a gas mixture which deviates from equilibrium and
a gas mixture consisting of polyatomic molecules.

First, the model is extended to a model for charged particles. Then, the equations
of magnetohydrodynamics are derived from this model. Next, we want to apply this
extended model to a mixture of ions and electrons in a special physical constellation
which can be found for example in a Tokamak. The mixture is partly in equilibrium
in some regions, in some regions it deviates from equilibrium. The model presented
in this thesis is taken for this purpose, since it has the advantage to separate the
intra and interspecies interactions. Then, a new model based on a micro-macro
decomposition is proposed in order to capture the physical regime of being partly
in equilibrium, partly not. Theoretical results are presented, convergence rates to
equilibrium in the space-homogeneous case and the Landau damping for mixtures,
in order to compare it with numerical results.

Second, the model presented here is applied to a gas mixture which deviates from
equilibrium such that it is described by Navier-Stokes equations on the macroscopic
level. In this macroscopic description it is expected that four physical coefficients will
show up, characterizing the physical behaviour of the gases, namely the diffusion
coefficient, the viscosity coefficient, the heat conductivity and the thermal diffusion
parameter. A Chapman-Enskog expansion of the model presented here is performed
in order to capture three of these four physical coefficients. In addition, several
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possible extensions to an ellipsoidal statistical model for gas mixtures are proposed in
order to capture the fourth coefficient. Three extensions are proposed: An extension
which is as simple as possible, an intuitive extension copying the one species case
and an extension which takes into account the physical motivation of the physicist
Holway who invented the ellipsoidal statistical model for one species. Consistency of
the extended models like conservation properties, positivity of all temperatures and
the H-theorem are proven. The shape of global Maxwell distributions in equilibrium
are specified.

Third, the model presented here is applied to polyatomic molecules. A multi
component gas mixture with translational and internal energy degrees of freedom
is considered. The two species are allowed to have different degrees of freedom
in internal energy and are modelled by a system of kinetic ellipsoidal statistical
equations. Consistency of this model is shown: conservation properties, positivity of
the temperature, H-theorem and the form of Maxwell distributions in equilibrium.
For numerical purposes the Chu reduction is applied to the developed model for
polyatomic gases to reduce the complexity of the model and an application for a gas
consisting of a mono-atomic and a diatomic gas is given.

Last, the limit from the model presented here to the dissipative Euler equations
for gas mixtures is proven.
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Introduction
In 1872, the physicist Boltzmann developed a partial differential equation which
describes the time evolution of a density distribution of particles in a rarefied mono-
atomic gas of one species. This partial differential equation is called Boltzmann
equation. The physical theory based on this equation is called kinetic theory and
models phenomena in the statistical physics. The kinetic theory was developed
among other physicists by Cercignani, Maxwell, Chapman, Cowling, Esposito and
Pulvirenti, see for example [24, 26, 39]. The properties of the Boltzmann equation
namely conservation properties of mass, momentum and energy were considered
more rigorously for example by Golse [47] or Villani [83]. There are a lot of articles
dealing with the existence of solutions to the Boltzmann equation, see for example
[4, 36, 37, 45].

In 1954, Bathnagar, Gross and Krook [16] proposed a simplified model with the
same main properties as the Boltzmann equation for one species. It is called BGK
model and is less complicated than the full Boltzmann equation. Moreover, it leads
to efficient numerical simulations, see for example [13, 34, 35, 41, 72]. In 1989,
Perthame proved existence of global solutions to the BGK equation for one species in
[69] and in 1993, Perthame and Pulvirenti established the existence and uniqueness
of mild solutions on a bounded domain in space with periodic boundary conditions
in [70].

Several physicists and engineers developed extensions of the BGK model for
one species to a BGK model for gas mixtures, for example Gross and Krook [49],
Hamel [51], Garzo, Santos and Brey [43], Sofonea and Sekerka [79] and Asinari
[6]. All this models have one thing in common. The interactions are described
by a sum of relaxation operators, one for interactions of a species with itself and
one for the interaction of a species with the other one. In 2002, Andries, Aoki
and Perthame proposed a BGK model for gas mixtures [1] with only one relaxation
operator describing all interactions in one relaxation operator. For this model they
proved consistency: conservation properties, positivity of all temperatures and the H-
theorem. Then, this model was used by several applied mathematicians for example
in [22, 48, 18].

There are three main applications where a gas mixture is modelled via a BGK
approach for gas mixtures. One main application is the physical regime of a plasma,
a mixture of ions and electrons. Here, the BGK equation was extended to the Vlasov-
BGK equation which has an additional force term taking into account the magnetic
and the electric fields generated by the charged particles [80]. In [75] the existence of
mild solutions for one species is established using estimates from [82]. Moreover, in
the collision less limit Landau discovered a damping property of the Vlasov equation
called Landau damping [63]. This was made more rigorous by Villani in [84] and
is now often used as a test case in numeric simulations concerning a plasma. One
specific application of a plasma is fusion in a Tokamak. In this case, the plasma is in
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equilibrium near the wall of the chamber of a fusion reactor, in the core plasma it
is not. For this regime, a micro-macro decomposition is used in the literature, see
[12, 28, 30].

Another application is to describe a gas which deviates from equilibrium such
that it is described by the Navier-Stokes equations on the macroscopic level. In this
case, it turns out that the BGK model is not an accurate description. Therefore,
Holway suggested a correction called ellipsoidal statistical model for one species
(ES-BGK model) in [54] in 1966. It is based on a physical theory called persistence
of velocities discovered by Jeans [55] in 1904. In [3], Andries and Perthame proved
that this model satisfies an H-theorem. In [21], Brull showed that this model is linked
to a minimization problem and Yun established existence and uniqueness of mild
solutions in [87].

The last main application is the modelling of polyatomic molecules. A lot of
models are proposed by physicists [76, 68, 54]. Andries, LeTallec, Perlat and Perthame
proved the H-theorem of one suggestion in [54] for one species in [2]. An alternative
model for one species was suggested by Bernard, Iollo and Puppo in [14]. A further
attempt in the area of polyatomic molecules is to take into account chemical reactions,
see for example [18].

Another recent area of research is to prove rigorously limits from kinetic to
macroscopic equations in the case of one species, see [46, 47, 78, 77].

The outline of this thesis is the following. In chapter 1, we introduce all fun-
damental things like the Boltzmann equation, link of the distribution function to
macroscopic quantities and the BGK approximation. In chapter 2, we present a model
for a gas mixture which contains well-known models from physicists and engineers as
special cases and prove consistency of this model, meaning conservation properties,
positivity of all temperatures and the H-theorem. In chapter 3, we illustrate the
usefulness of the model presented in chapter 2 by using it to determine an unknown
function in the energy exchange in a macroscopic model of Dellacherie [32]. In
chapter 4, we prove existence, uniqueness and positivity of mild solutions for the
model presented in chapter 2 and for the other type of model for gas mixtures [1].
In chapter 5, we extend the model presented in chapter 2 to charged particles. In
chapter 6, we use this extended model to model a gas mixture consisting of ions and
electrons. We perform a micro-macro decomposition and establish theoretical esti-
mates such that one can perform a simulation for a plasma and compare it with these
theoretical results. In chapter 7, we extend the model from chapter 2 to an ES-BGK
model for gas mixtures and perform a Chapman-Enskog expansion in order to see
that we can capture the right hydrodynamic regime on the level of the Navier-Stokes
equations. In chapter 8, we extend the model presented in chapter 2 to polyatomic
molecules. In chapter 9, we prove convergence of the model presented in chapter 2
to the incompressible Euler equations for gas mixtures.
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Chapter 1

Fundamentals

In this chapter we give a brief introduction into the fundamental differential equation
in the kinetic theory of gases, the Boltzmann equation. Section 1.1 deals with the
mathematical foundation of the Boltzmann equation, the homogeneous transport
equation. In section 1.2 we give an introduction into the basic physical treatment of
a gas, Newton’s laws of motion. In section 1.3 we give a brief introduction into the
Boltzmann equation itself whereas section 1.4 deals with a well-known approximation
of the Boltzmann equation, the BGK equation.

1.1 The transport equation and characteristic curves

In this section we consider the homogeneous transport equation. Literature on the
homogeneous transport equation and characteristic curves can be found for example
in chapter 1.2 of Evans [40] or in chapter 1.3 and 1.4 of John [57]. The homogeneous
transport equation is given by

∂tf
hom + b · ∇xfhom + c · ∇vfhom = 0 in R3 × R3 × R+,

fhom(x, v, 0) = fhom,0(x, v),
(1.1)

where b, c : R3 × R3 × R+
0 → R3 are given functions, b = b(x, v, t), c = c(x, v, t),

the function fhom : R3 × R3 × R+ → R is the unknown, fhom = fhom(x, v, t) and
fhom,0 : R3 × R3 → R the initial value. Here (x, v) ∈ R3 × R3 denotes a point in the
position-velocity space called phase space and t ≥ 0 denotes the time.

For later purposes, we want to introduce an approach how to construct solutions to
(1.1). The idea is to reduce the problem of finding a solution to a partial differential
equation to a problem of finding a solution to a system of ordinary differential
equations. This approach is described in the following. We can show that any
classical solution to (1.1) is constant along certain curves in the t-(x, v)-space. Let
γ : [0, 1]→ R3 × R3 × R+, s 7→ γ(s) = (v(s), x(s), t(s)) be a smooth parametrisation
of a curve in R3 ×R3 ×R+. Now, consider the function z(s) = fhom(x(s), v(s), t(s)).
Then the derivative of z with respect to s is given by

d

ds
z(s) =

dt(s)

ds
∂tf

hom(x(s), v(s), t(s)) +
dx(s)

ds
· ∇xfhom(x(s), v(s), t(s))

+
dv(s)

ds
· ∇vfhom(x(s), v(s), t(s)).

(1.2)

3



1 Fundamentals

Comparing (1.2) with (1.1), we see that fhom is constant along the curve parametrized
by γ, if γ satisfies the following system of ordinary differential equations

dt(s)

ds
= 1,

dx(s)

ds
= b(x(s), v(s), t(s)),

dv(s)

ds
= c(x(s), v(s), t(s)).

(1.3)

So we reduced the problem (1.1) to a system of ordinary differential equations by
introducing this specific curve γ.

Definition 1.1.1. The curve γ, on which the solution of the partial differential
equation (1.1) is constant, is called a characteristic curve or characteristic line, and
the corresponding ordinary differential equations are called characteristic equations.

If we can solve the characteristic equations, we can solve (1.1) for fhom by going
back to the initial data along the characteristic line, which has the same value there,
since we showed that the solution is constant along characteristic lines. We illustrate
this in the following example.

Example 1.1.1. Let b(x, v, t) = v and c(x, v, t) = 0 in (1.1). In this case, we can
solve the characteristic equations (1.3) and obtain

t(s) = s+ t0, x(s) = vs+ x0, v(s) = v0, (1.4)

for some t0 ≥ 0, x0, v0 ∈ R3. Since our initial data on fhom is given at time t = 0,
we choose t0 = 0. The solution is unique since in this case the right-hand side of
(1.3) is Lipschitz continuous in (x, v) and continuous in the variables (x, v, t). This
guarantees that the solution is unique according to the theorem of Picard-Lindelöf,
see for example theorem 16.1 in volume 1 of [33]. Since we know that the solution
of (1.1) is constant along the characteristic lines, we can solve the equation for a
given initial data fhom(x, v, 0) = fhom,0(x, v). The solution fhom is equal to the
function z if we choose s = t, so fhom(x, v, t) = z(t). The function z is constant
along characteristic lines, therefore z(t) = z(0) along solutions to (1.4). By the
definition of z, z(0) is nothing else than the function fhom evaluated at (x0, v0, 0), so
z(0) = fhom(x0, v0, 0). Now, we can invert the equations (1.4) for (x0, v0) and write
(x0, v0) in terms of (x, v). All in all, we obtain

fhom(x, v, t) = fhom,0(x− vt, v),

which is a solution to the initial value problem (1.1).

1.2 Newton’s fundamental laws of motion

We consider a gas consisting of particles. According to physical axioms, the time
evolution of the individual particles is described by the fundamental laws of Newton.
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1.2 Newton’s fundamental laws of motion

In this section we introduce these two fundamental laws and apply them to a situation
in which the gas particles are modelled as balls and can collide with each other. Note,
that parts of the following are also mentioned in my Bachelor thesis [73].

1.2.1 Newton’s equations and Newton’s third law

We assume that our gas consisting of one species of particles can be modelled as a
collection of N identical particles with masses m interacting via a force. We number
the particles by the index s ∈ {1, ..., N}. The state of each particle is described by
their positions of the centre xs ∈ R3 and their velocities vs ∈ R3 at any time t ∈ R+

0

for s = 1, ..., N . Consider a particle with position x0
s ∈ R3 and velocity v0

s ∈ R3 at a
time t0 ∈ R+

0 . Then, it is an axiom of the classical mechanics that the time evolution
of the position xs(t) and the velocity vs(t) for t ≥ t0 is given by the following system
of ordinary differential equations called Newton’s equations:

Axiom 1.2.1 (Newton’s equations). Let x0
s ∈ R3 and v0

s ∈ R3 be the position and the
velocity of a particle s ∈ {1, ..., N} at a time t0 ∈ R+

0 . Then the time evolution of
the position xs(t) and the velocity vs(t) of this particle are determined by Newton’s
equations given by

d

dt
xs(t) = vs(t),

m
d

dt
vs(t) =

N∑
j=1

j 6=s

Fs,int,j(xs(t), vs(t), xj(t), vj(t), t) + Fext(xs(t), vs(t), t),

xs(t0) = x0
s, vs(t0) = v0

s ,

(1.5)

for all t > t0, where
∑N

j=1

j 6=s
Fs,int,j(xs(t), vs(t), xj(t), vj(t), t) + Fext(xs(t), vs(t), t)

denotes the force on the particle s and can be split into an external force
Fext(xs(t), vs(t), t) and a force describing the interactions with the other particles

N∑
j=1

j 6=s

Fs,int,j(xs(t), vs(t), xj(t), vj(t), t).

The meaning of the equations is the following. If the particle s has a velocity vs,
the position xs of the particle s will change in time. And if a force is acting on this
particle s, the velocity vs will change in time.

In addition, there is another law of Newton concerning the forces in an interaction
of two particles. It states the following:

Axiom 1.2.2 (Newton’s third law). If a particle exerts a force on another particle,
the other particle always inserts a force on the first particle with the same absolute
value in the opposite direction.
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1 Fundamentals

1.2.2 Conservation laws and elastic interactions

From the dynamic of Newton’s laws one can deduce some fundamental physical
properties, the conservation of momentum and energy in interactions. This properties
allow to determine the velocities of two particles after an interaction knowing
the velocities before an interaction in the case of particles interacting via elastic
interactions. We start with the conservation of momentum.

Consequence 1.2.1 (Conservation of momentum). Let m1,m2 be the masses, x1(t),
x2(t) the positions and v1(t), v2(t) the velocities determined by Newton’s laws (1.5)
of two particles. Assume that Fext = 0. Then, under the hypothesis of axiom 1.2.2,
we have

m1v1(t) +m2v2(t) = const,

for all t ∈ I where I ⊂ [t0,∞) is an interval where the two particles do not interact
with the other N − 2 particles.

Proof. If Fext = 0, Newton’s equations are given by

m1
d

dt
v1(t) = F1,int,2(x1(t), v1(t), x2(t), v2(t), t), (1.6)

m2
d

dt
v2(t) = F2,int,1(x1(t), v1(t), x2(t), v2(t), t). (1.7)

Under the hypothesis of axiom 1.2.2, we have

F1,int,2(x1(t), v1(t), x2(t), v2(t), t) = −F2,int,1(x1(t), v1(t), x2(t), v2(t), t),

for all t ∈ I. If we then add (1.6) and (1.7) and integrate with respect to t, this leads
to

m1v1(t) +m2v2(t) = const for all t ∈ I.

Another consequence from Newton’s laws is the conservation of energy.

Consequence 1.2.2 (Conservation of energy). Let m1,m2 be the masses, x1(t), x2(t)
the positions and v1(t), v2(t) the velocities determined by Newton’s laws (1.5) of two
particles. Assume that Fext = 0; and that F1,int,2 depends only on x1(t)− x2(t), and
assume that there exists a function Φ(x) such that F1,int,2 = −∇xΦ. Then, under the
hypothesis of axiom 1.2.2, we have

1

2
m1|v1(t)|2 +

1

2
m2|v2(t)|2 + Φ = const,

for all t ∈ I where I ⊂ [t0,∞) is an interval where the two particles do not interact
with the other N − 2 particles.
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1.2 Newton’s fundamental laws of motion

Proof. If Fext = 0 and under the assumption that F1,int,2 depends only on x1(t) −
x2(t), Newton’s equations are given by

m1
d

dt
v1(t) = F1,int,2(x1(t)− x2(t)), (1.8)

m2
d

dt
v2(t) = F2,int,1(x1(t), v1(t), x2(t), v2(t), t). (1.9)

Under the hypothesis of axiom 1.2.2, we have

F1,int,2(x1(t)− x2(t)) = −F2,int,1(x1(t), v1(t), x2(t), v2(t), t) for all t ∈ I.

We multiply (1.8) by v1(t), (1.9) by v2(t) and add them. Under the assumption that
F1,int,2 can be written as minus a gradient of a potential Φ, we obtain

d

dt

(
1

2
(m1|v1(t)|2 +m2|v2(t)|2

)
= F1,int,2(x1(t)− x2(t)) · (v1(t)− v2(t))

= −∇xΦ(x1(t)− x2(t)) · (v1(t)− v2(t))

= − d

dt
Φ(x1(t)− x2(t)) for all t ∈ I.

The last equality follows by chain rule and the first equation in Newton’s equations
(1.6). If we integrate the obtained equation with respect to t from t0 to t we obtain
the result.

In consequence 1.2.2 we assumed the existence of a scalar potential Φ such that
we can write F1,int,2 as minus the gradient of the scalar function Φ. The physical
meaning of this is the following. Let γ̃ : [0, 1]→ Γ ⊂ R3 be a smooth parametrization
of a curve in R3 and F : Γ → R3 be a smooth vector field representing the force
exerting on a particle which moves along Γ. Then the physical work of this particle is
defined by ∫

γ̃

F · ds =

∫ 1

0

F (γ̃(t))γ̃′(t)dt.

One can prove the following lemma.

Lemma 1.2.3. Let Ω ⊂ R3 be an open and connected subset and F be a smooth force
field on Ω. Then we have: It exists a smooth function Φ such that F = −∇xΦ in Ω if
and only if F is independent of the path, that means∫

Γ1

F · ds =

∫
Γ2

F · ds

for all curves Γ1,Γ2 in Ω which coincide in the start and end points.

The proof is given in theorem 13.50 in volume 1 of [33]. This lemma has the
following physical consequence. The work which is needed to move a particle in this
field F is independent of the path. That means the energy of the particle is conserved
in a closed path, it neither gains nor loses energy there.

We conclude with the last consequence from Newton’s laws which is the conser-
vation of angular momentum.
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Consequence 1.2.4 (Conservation of angular momentum). Let b̃ ∈ R3 be a fixed
point in space. Let m1,m2 be the masses, x1(t), x2(t) the positions and v1(t), v2(t) the
velocities determined by Newton’s laws (1.5) of two particles. Assume that Fext = 0,
F1,int,2 is parallel to x1(t) − b̃ and F2,int,1 is parallel to x2(t) − b̃. Then, under the
hypothesis of axiom 1.2.2, we have

mk(xk(t)− b̃)× vk(t) = c for k = 1, 2, and a constant c ∈ R,

and for all t ∈ I where I ⊂ [t0,∞) is an interval where the two particles do not
interact with the other N − 2 particles. Furthermore, the map c(b̃) is continuous in b̃.

Proof. If we use the product rule for a cross product and Newton’s equations (1.5)
for Fext = 0, we obtain

d

dt
[mk(xk(t)− b̃)× vk(t)] = mk(xk(t)− b̃)× d

dt
vk(t)

= (xk(t)− b̃)× Fk,int,j(xk(t), vk(t), xj(t), vj(t), t) = 0,

for all k, j = 1, 2, k 6= j and for all t ∈ I. The last equality is satisfied since we
assumed that F1,int,2 is parallel to x1(t)− b̃ and F2,int,1 is parallel to x2(t)− b̃. This
shows the first statement. It remains to prove that the map c(b̃) is continuous in b̃.
Let b̃1, b̃2 ∈ R3 be arbitrary. Then we have

|c(b̃1)−c(b̃2)| = |mk(xk−b̃1)×vk−m(xk−b̃2)×vk| = |m(b̃2−b̃1)×vk| ≤ m|vk||b̃2−b̃1|.

Therefore c(b̃) is Lipschitz continuous in b̃, especially continuous.

The physical meaning is the following. In the proof of the next corollary, we will
see that the conservation of angular momentum means that the particles always stay
in the same plane.

In the rest of this section we want to apply the conservation laws to a specific
physical example. We now want to apply the conservation laws in order to determine
the velocities of the particles after the interaction depending on the velocities before
the interaction.

Corollary 1.2.5 (Velocities after an interaction). Let m1,m2 be the masses of two
particles. Let v1, v2 be two velocities before a collision of the two particles. Assume that
Fext = 0, F1,int,2 depends only on x1(t) − x2(t) and is parallel to x1(t) − x2(t) and
F2,int,1 is parallel to x2(t) − x1(t), and that during the interaction the two particles
do not interact with the other N − 2 particles. We assume that we can write the force
F1,int,2 as minus a gradient of a scalar potential Φ with compact support. Let ω be
the unit vector along the line with the minimal distance of the two particles during the
interaction in the direction of particle 2, see figure 1.1. Then under the hypothesis of
axiom 1.2.2, we can derive the following conservation laws during a collision

m1v1 +m2v2 = m1v
′
1 +m2v

′
2,

m1|v1|2 +m2|v2|2 = m1|v′1|2 +m2|v′2|2,
(1.10)
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1.2 Newton’s fundamental laws of motion

and the velocities of the two particles v′1, v
′
2 after the interaction are given by

v′1 = v1 −
2m2

m1 +m2
ω[(v1 − v2) · ω],

v′2 = v2 +
2m1

m1 +m2
ω[(v1 − v2) · ω],

provided that the particles change its velocities instantaneously in time into v′1, v
′
2 during

the interaction at the time t∗ when the two particles have their minimal distance during
the interaction. Then ω can be written as ω = x1(t∗)−x2(t∗)

|x1(t∗)−x2(t∗)| .

Proof. Since F1,int,2 is parallel to x1(t∗ − ε)− x2(t∗ − ε) at time t∗ − ε and F1,int,2 is
parallel to x1(t∗ + ε)− x2(t∗ + ε) at time t∗ + ε, we have

m1(x1(t∗ − ε)− x2(t∗ − ε))× v1(t∗ − ε) = c(x2(t∗ − ε)),
m1(x1(t∗ + ε)− x2(t∗ + ε))× v′1(t∗ + ε) = c(x2(t∗ + ε)),

according to consequence 1.2.4 with b̃ = x2(t∗ − ε) and b̃ = x2(t∗ + ε), respectively,
where ε denotes a positive constant such that [t∗ − ε, t∗ + ε] ⊂ I where I ⊂ [t0,∞)
is an interval where the two particles do not interact with the other N − 2 particles
and outside the compact support of Φ. Since x1, x2, v1, v

′
1 are continuous as classical

solutions and c is continuous in b̃, we obtain in the limit ε→ 0

m1(x1(t∗)− x2(t∗))× v1(t∗) = m1(x1(t∗)− x2(t∗))× v′1(t∗),

under the assumption that particle 1 changes its velocity v1 instantaneously at t∗ into
v′1; and v1 and v′1 are assumed to go forwards and backwards, respectively, in time as
there were no interaction at this point. This type of interaction is called localized in
time. This means that v′1(t∗)− v1(t∗) is parallel to ω. Therefore, there exists α ∈ R
such that

v′1 − v1 = αω,

which is equivalent to

v′1 = αω + v1. (1.11)

Here, and in the following, we will omit the argument t∗. Analogously, one obtains

v′2 = βω + v2, (1.12)

choosing b̃ = x2(t∗ ± ε) for some β ∈ R. From consequence 1.2.1, we get

m1v
′
1 +m2v

′
2 = m1αω +m1v1 +m2βω +m2v2

!
= m1v1 +m2v2.

This leads to α = −m2

m1
β. From conservation of energy (consequence 1.2.1), we

obtain

m1|v′1|2 +m2|v′2|2 = m1|αω + v1|2 +m2| −
m1

m2
αω + v2|2

= m1α
2 +m1|v1|2 + 2m1αω · v1 +m2|v2|2 +

m2
1

m2
α2 − 2m1αω · v2

!
= m1|v1|2 +m2|v2|2.
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This leads to
αm1(α+ 2ω · v1 +

m1

m2
α− 2ω · v2) = 0.

If α = 0, we would have v1 = v′1 and v2 = v′2 and there would be no interaction.
Therefore α 6= 0 and we have

α+ 2ω · v1 +
m1

m2
α− 2ω · v2 = 0.

Thus
α = − 2m2

m1 +m2
ω · (v1 − v2),

and therefore
β =

2m1

m1 +m2
ω · (v1 − v2).

Inserting this into (1.11) and (1.12), we obtain the expressions for the velocities
after the interaction claimed in corollary 1.2.5.

 

particle 1

particle 2

v1

ω
v2line with minimal

distance during the
collision at time t*

x1

x2

Figure 1.1: Collision of two particles. Particle 2 has the minimal distance to particle 1. The vector ω represents the
direction of the line connecting the two positions x1 and x2 during they are at the minimal distance.

Remark 1.2.1. Note that the operator Tω : (v1, v2) 7→ (v′1, v
′
2) has the following

properties:

i) Tω is invertible with Tω ◦ Tω = 16×6,

ii) Tω has unit Jacobian,

iii) We have ω · (v1 − v2) = −ω · (v′1 − v′2),

|v1 − v2| = |v′1 − v′2|, (1.13)

for every v1, v2 ∈ R3, ω ∈ S2.

These properties can easily be verified and are also mentioned in [25, 24, 83, 1].

The physical meaning of the first part of the remark is the following. The fact
that Tω is self-invertible reflects the physical principle that for elastic collisions the
collision is reversible.
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1.3 The Boltzmann equation for gas mixtures

1.3 The Boltzmann equation for gas mixtures

In this section we want to give an overview of the fundamental equation in gas
dynamics, the Boltzmann equation, and its fundamental properties. For one species
of particles, there are a lot of introductory books and lecture notes in the literature
concerning the Boltzmann equation and its fundamental properties, see [25, 24, 39,
46, 47, 81, 83]. Since we attempt to extend the subject to gas mixtures, the following
overview is an extension of the properties of the Boltzmann equation found in the
literature for one species to gas mixtures. For simplicity, we only consider two species.
Furthermore, we assume that we have no chemical reactions and the number of
particles of each species remains constant. Note that parts of the following are also
given in my Master thesis [74].

1.3.1 Fundamental definitions

The most natural way to describe a gas with one species of N identical particles is
to model the particles as balls interacting via a force. We number the particles by
the index s ∈ {1, ..., N}. The state of each particle is described by their positions of
the centre xs ∈ R3 and velocities vs ∈ R3 at any time t ∈ R+

0 . We describe the time
evolution of these positions and velocities by Newtons equations (1.5). So knowing
all initial data, we are able to compute the time evolution of this gas. But a gas
consists of a number of interacting particles in the order of 1023, so one would have to
solve a set of about 1023 coupled equations. This is not possible, among others there
is no computer which has a high enough capacity to solve this. This fact was realized
by Maxwell and Boltzmann. Therefore they started to work with a distribution
function f(x, v, t) where x ∈ R3 and v ∈ R3 are the phase space variables and t ≥ 0
the time. The meaning of f is as follows: any infinitesimal volume dxdv centred
at (x, v) contains at time t about f(x, v, t)dxdv particles. So we do not consider the
positions and velocities of each single particle, we only consider the distribution of
the positions and velocities in phase-space. We state this in our first definition.

Definition 1.3.1 (Distribution function). A function f : R3×R3×R+
0 → R, (x, v, t) 7→

f(x, v, t) is called a distribution function if and only if f(x, v, t)dxdv is the number of
particles with velocities in (v, v + dv) located in the interval (x, x+ dx) at time t.

Since we consider a mixture composed of two different species, our kinetic model
has two distribution functions f1(x, v, t) > 0 and f2(x, v, t) > 0, one for each species.
The distribution function gives a detailed picture of the state of the gas, but it is not
measurable in experiments. Measurable in experiments are quantities as the number
density, the mean velocity and the temperature. For any f1, f2 : Λ× R3 × R+

0 → R,
Λ ⊂ R3 with (1 + |v|2)f1, (1 + |v|2)f2 ∈ L1(dv), f1, f2 ≥ 0, we can relate them to our
distribution functions in terms of microscopic averages of fk, k = 1, 2 with respect to
the velocity v illustrated in the following definitions.
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From definition 1.3.1 follows that the total number of particles Nk in a volume
V ⊂ Λ× R3 is given by

Nk =

∫
V

fkdvdx.

When we integrate only with respect to the velocity, we obtain a density only in
x-space.

Definition 1.3.2 (Number density). Let f1, f2 : Λ × R3 × R+
0 → R, Λ ⊂ R3 with

f1, f2 ∈ L1(dv), f1, f2 ≥ 0 be two distribution functions. Then, the function

nk : R3 × R+
0 → R; (x, t) 7→ nk(x, t) =

∫
R3

fk(x, v, t)dv,

is called the number density of species k for k = 1, 2.

Definition 1.3.3 (Mean velocity). Let f1, f2 : Λ × R3 × R+
0 → R, Λ ⊂ R3 with

(1 + |v|2)f1, (1 + |v|2)f2 ∈ L1(dv), f1, f2 ≥ 0 be two distribution functions. Then, we
define the function

nkuk : R3 × R+
0 → R3; (x, t) 7→ (nkuk)(x, t) =

∫
R3

fk(x, v, t)vdv.

If nk > 0, the function uk = nkuk
nk

is called the mean velocity of species k for k = 1, 2.

The kinetic energy of a particle is given by mk
2 |v|

2, where mk denotes the mass
of the particles of species k. By averaging over all microscopic energies we obtain a
macroscopic energy density.

Definition 1.3.4 (Energy density). Let f1, f2 : Λ× R3 × R+
0 → R, Λ ⊂ R3 with

|v|2f1, |v|2f2 ∈ L1(dv), f1, f2 ≥ 0 be two distribution functions. Then, the function

Ek : R3 × R+
0 → R; (x, t) 7→ Ek(x, t) =

1

2
mk

∫
R3

fk(x, v, t)|v|2dv,

is called the energy density of species k for k = 1, 2.

We split the energy Ek into the kinetic energy 1
2mknk|uk|2 and the remainder

which has the physical meaning of the internal energy. This defines the internal
energy ek := Ek − 1

2mknk|uk|2. One can compute that ek can be rearranged to
ek = 1

2mk

∫
R3 |v−uk|2fkdv. This is true since 1

2 |v|
2− 1

2 |uk|
2 = 1

2 |v−uk|
2−|uk|2+v·uk,

and we see that
∫
R3 |uk|2fkdv =

∫
R3 v · ukfkdv using the definitions 1.3.2 and 1.3.3.

Therefore ∫
R3

1

2
|v|2fkdv −

∫
R3

1

2
|uk|2fkdv =

∫
R3

1

2
|v − uk|2fkdv,

which means
Ek −

1

2
mknk|uk|2 =

1

2
mk

∫
R3

|v − uk|2fkdv.

So ek is equal to
∫
R3

1
2mk|v − uk|2fkdv.
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Moreover, we assume that we are in an ideal gas meaning that the gas is imagined
as consisting of moving balls or point particles whose only interactions are perfectly
elastic collisions. Furthermore, the gas is dilute enough such that we have only dual
interactions. In this case, one observes in experiments that the internal energy is
proportional to its temperature. We summarize both facts in the next definition.

Definition 1.3.5 (Internal energy and temperature). Let f1, f2 : Λ× R3 × R+
0 → R,

Λ ⊂ R3 with (1+|v|2)f1, (1+|v|2)f2 ∈ L1(dv), f1, f2 ≥ 0 be two distribution functions.
Then, the function

ek : R3 × R+
0 → R; (x, t) 7→ ek(x, t) = Ek(x, t)− 1

2
mknk|uk|2

=
1

2
mk

∫
R3

fk(x, v, t)|v − uk(x, t)|2dv,

is called the internal energy of species k for k = 1, 2. If we are in an ideal gas and
nk > 0, the function Tk = 2

3
ek
nk

is called the temperature of species k for k = 1, 2.

The integral ek = 1
2mk

∫
R3 fk|v−uk|2dv can be motivated as follows. The integral

has a value different from zero if the distribution of the microscopic velocities has
a deviation from the mean velocity. If the gas has internal energy, the particles can
use this energy to deviate from the macroscopic velocity. So the internal energy is a
measure of the deviation from the mean velocity. If the internal energy of a gas is
high, the deviation is high and the other way round.

There are two more moments which have a meaningful physical interpretation
being the energy flux Qk and the pressure tensor Pk.

Definition 1.3.6 (Energy flux). Let f1, f2 : Λ× R3 × R+
0 → R, Λ ⊂ R3 with

(1 + |v|2)f1, (1 + |v|2)f2 ∈ L1(dv), f1, f2 ≥ 0 be two distribution functions. Then, the
function

Qk : R3 × R+
0 → R3; (x, t) 7→ Qk(x, t) =

1

2
mk

∫
R3

fk(x, v, t)|v|2vdv,

is called the energy flux of species k for k = 1, 2.

Definition 1.3.7 (Pressure tensor). Let f1, f2 : Λ× R3 × R+
0 → R, Λ ⊂ R3 with

(1 + |v|2)f1, (1 + |v|2)f2 ∈ L1(dv), f1, f2 ≥ 0 be two distribution functions. Then, the
function

Pk : R3 × R+
0 → R3×3; (x, t) 7→ Pk(x, t) = mk

∫
R3

(v − uk(x, t))⊗ (v − uk(x, t))fk(x, v, t)dv,

is called the pressure tensor of species k for k = 1, 2.

The pressure tensor contains the friction of a gas. On particles, which are faster
than the mean velocity uk, acts a force, that decelerate the particles and on particles,
which are slower than the mean velocity, uk acts a force which accelerates the
particles.
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1.3.2 The Boltzmann model

Now, we want to describe the time evolution of the distribution functions f1 and
f2. Since we have two distribution functions, we expect to need two equations to
describe their time evolution. Furthermore, the particles of one species can interact
with particles of the same species or with particles of the other species. The following
Boltzmann model for two species is also mentioned in [25, 24, 80]. We assume
that we have no external forces and only binary interactions. Then the Boltzmann
equation governs the time evolution of f1 and f2. It reads

∂tf1 + v · ∇xf1 = Q11(f1, f1) +Q12(f1, f2),

∂tf2 + v · ∇xf2 = Q22(f2, f2) +Q21(f2, f1),
(1.14)

with

Q11(f1, f1) =
1

m1

∫
R3

∫
S2

B11(|v − v1|, ω)

· (f1(x, v′, t)f1(x, v′1, t)− f1(x, v, t)f1(x, v1, t))dωdv1,

Q22(f2, f2) =
1

m2

∫
R3

∫
S2

B22(|v − v1|, ω)

· (f2(x, v′, t)f2(x, v′1, t)− f2(x, v, t)f2(x, v1, t))dωdv1,

Q12(f1, f2) =
1

m1

∫
R3

∫
S2

B12(|v − v1|, ω)

· (f1(x, v′, t)f2(x, v′1, t)− f1(x, v, t)f2(x, v1, t))dωdv1,

and

Q21(f2, f1) =
1

m2

∫
R3

∫
S2

B21(|v − v1|, ω)

· (f2(x, v′, t)f1(x, v′1, t)− f2(x, v, t)f1(x, v1, t))dωdv1.

The vector ω is the unit vector on S2 defined in corollary 1.2.5, v′1 and v′ are
the velocities of two particles after an interaction given by the formula proven in
corollary 1.2.5 with velocities v1 and v in the beginning. The non-negative functions
Bjk(|v−v1|, ω) for j, k = 1, 2 are called the collision kernels and contain the properties
of the interaction between the particles of the gas. Precisely it is the norm of the
relative velocity of v and v1 times the differential cross section which will be explained
in a moment.

Let us motivate the physical meaning of this equation. First, let us motivate the
transport part on the left-hand side of the Boltzmann equation. For this, neglect for
the moment the interaction between particles. We consider the time evolution of the
individual particles. According to Newton’s equations (1.5), the particles travel at a
constant velocity, along a straight line in the absence of interactions, and therefore
the distribution function is constant along the characteristic lines

dx(t)

dt
= v(t),

dv(t)

dt
= 0.
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1.3 The Boltzmann equation for gas mixtures

The corresponding partial differential equation to this characteristic lines is the
transport equation

∂tfk + v · ∇xfk = 0,

see example 1.1.1 in section 1.1. This motivates the left-hand side of the Boltzmann
equations. Next, let us motivate the collision operators on the right-hand side.

The operators Qkj , k, j = 1, 2 represent the change of the distribution functions
due to interactions of the particles. In interactions the distribution functions change
due to a change of the velocities in an interaction according to the formula proven
in corollary 1.2.5. So Qkj are operators acting on the velocity variables only. The
operators Q11 and Q22 describe the interactions of particles of a species with itself
whereas Q12 and Q21 describe the interaction of particles of a species with the other
one.

We assume that the particles interact via binary interactions. From the physical
point of view this is true if the gas is dilute enough that the effect of interactions
involving more than two particles can be neglected. This is reflected in the quadratic
structure of the collision term.

We assume that our collisions are elastic which means that the conservation
properties 1.2.1, 1.2.2 and 1.2.4 are satisfied. Therefore we describe the change of
the velocities with the help of the formula given in corollary 1.2.5.

Inside the integrals in Qkj we describe the influence of an interaction by the
non-negative collision kernel Bkj . It is the norm of the relative velocity of v and
v1 times the differential cross section. The differential cross section describes the
probability that a collision occurs, see section 1 in [20]. Since the probability that
a particle of species 1 interacts with a particle of species 2 and the probability that
a particle of species 2 interacts with a particle of species 1 is the same, we have the
equality B12 = B21.

The operator Qkj can be split into a gain and a loss term. The loss term counts
all interactions in which a given particle with velocity v will meet another particle
with velocity v1. As a result of such an interactions, this particle will change its
velocity and this will make less particles with velocity v. On the other hand, each
time particles interact with velocities v′ and v′1, the particle with velocity v′ will get v
as a new velocity after the collision, and this will make more particles with velocity v:
this is the meaning of the gain term. This is illustrated in figure 1.2.

The appearance of the products fk(x, v, t)fj(x, v1, t) and fk(x, v′, t)fj(x, v
′
1, t) is

a consequence of the so-called chaos assumption: First of all, we expect that the
probability of a collision depends on a joint distribution function of two particles
f12(x, v, v1, t). Then the chaos assumption is the following. We assume that velocities
of the two particles which are about to collide are uncorrelated. This means that if we
randomly take two particles at position x, which have not collided yet, then the joint
distribution of their velocities will be given by the tensor product f1(x, v, t)f2(x, v1, t).

Last, the fact that the variables t, x appear only as parameters reflects the assump-
tion that collisions are localized in space and time.
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t* collision

v1‘ v‘
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t
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Gain of velocity v

ω
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Figure 1.2: Gain and loss of velocity. On the left, two particles with velocities v′1 and v′ collide at time t∗ and change
its velocities into v1 and v. On the right, two particles with velocities v and v1 collide at time t∗ and change its
velocities into v′ and v′1. The right case describes a loss of velocity v, the left one a gain of velocity v.

1.3.3 Fundamental properties of the Boltzmann equation

The Boltzmann equation has two main properties. The first one is the following. In
interactions the number of particles, the total momentum and the total energy are
conserved. The second property is that one can show that the Boltzmann equation
admits an entropy. An entropy is a function which always decreases in time. In this
case it will turn out to correspond to the notion of entropy used in physics. The
proofs for the collision operators Q11 and Q22 describing the interactions of a species
with itself can be found in [46, 47, 83]. In this case we just state the results and show
only the proofs for the collision operators describing the interactions of a species
with the other one. These proofs are extended versions of the proofs for the single
collision operators given in [46, 47, 83].

Conservation properties

We start with the conservation properties namely conservation of the number of
particles, conservation of momentum and conservation of energy in interactions of a
species with itself. This concerns the collision operators Q11 and Q22.

Theorem 1.3.1 (Conservation properties in interactions of a species with itself).
For all f ∈ L∞(dv) with compact support or decaying fast enough at infinity and all
i = 1, 2, 3, k = 1, 2, we have∫

R3

Qkk(f, f)dv =

∫
R3

Qkk(f, f)vidv =

∫
R3

Qkk(f, f)|v|2dv = 0.

The proof is given in [46, 47, 83] and is a special case of the proof shown next
for the collision operators describing collisions of a species with the other one.
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1.3 The Boltzmann equation for gas mixtures

Theorem 1.3.2 (Conservation properties in interactions of a species with the other
one). For all f1, f2 ∈ L∞(dv) with compact support or decaying fast enough at infinity,
we have the following conservation properties.
We have conservation of the number of particles in every interaction∫

R3

Q12(f1, f2)dv =

∫
R3

Q21(f2, f1)dv = 0. (1.15)

We have conservation of total momentum∫
R3

(m1vQ12(f1, f2) +m2vQ21(f2, f1))dv = 0. (1.16)

We have conservation of total energy∫
R3

(m1|v|2Q12(f1, f2) +m2|v|2Q21(f2, f1))dv = 0. (1.17)

Proof. Let h and g be arbitrary continuous functions of the velocity v.
First, we consider the term

∫
R3 h(v)Q12(f1, f2)(v)dv. Then, we will consider the term∫

R3 g(v)Q21(f2, f1)(v)dv. The idea is to rewrite these two expressions in another way
such that we can directly see that the integral is zero if we choose h and g as 1, the
microscopic momentum m1v and m2v, respectively and the microscopic energies
1
2m1|v|2 and 1

2m2|v|2, respectively. We start with
∫
R3 h(v)Q12(f1, f2)(v)dv. From the

definition of Q12(f1, f2), we see∫
R3

h(v)Q12(f1, f2)(v)dv =

∫
R3×R3×S2

1

m1
B12(|v − v1|, ω)h(v)

·[f1(v′)f2(v′1)− f1(v)f2(v1)]dωdvdv1.

(1.18)

Now we exchange the notation (v, v′) and (v1, v
′
1) and m1 and m2 on the right-hand

side, so we get∫
R3

h(v)Q12(f1, f2)(v)dv =

∫
R3×R3×S2

1

m2
B21(|v − v1|, ω)h(v1)

·[f1(v′1)f2(v′)− f2(v)f1(v1)]dωdvdv1.

(1.19)

This is possible due to the following reason. We can say that we take a particle with
velocity v and mass m1 which interacts with a particle with velocity v1 and mass m2.
It is equivalent if we say that we take a particle with velocity v1 and mass m2 which
interacts with a particle with velocity v and mass m1. Now we exchange (v, v1) and
(v′, v′1) on the right-hand side of (1.18) and (1.19). This is possible since the operator
Tω is self-inverse as stated in remark 1.2.1.∫

R3

h(v)Q12(f1, f2)(v)dv =

∫
R3×R3×S2

1

m1
B12(|v′ − v′1|, ω)(−h(v′))

·[f1(v′)f2(v′1)− f1(v)f2(v1)]dωdv′dv′1,

(1.20)
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∫
R3

h(v)Q12(f1, f2)(v)dv =

∫
R3×R3×S2

1

m2
B21(|v′ − v′1|, ω)(−h(v′1))

·[f2(v′)f1(v′1)− f2(v)f1(v1)]dωdv′dv′1.

(1.21)

Using the property (1.13) stated in remark 1.2.1, we obtain∫
R3

h(v)Q12(f1, f2)(v)dv =

∫
R3×R3×S2

1

m1
B12(|v − v1|, ω)(−h(v′))

·[f1(v′)f2(v′1)− f1(v)f2(v1)]dωdv′dv′1,

(1.22)

∫
R3

h(v)Q12(f1, f2)(v)dv =

∫
R3×R3×S2

1

m2
B21(|v − v1|, ω)(−h(v′1))

·[f2(v′)f1(v′1)− f2(v)f1(v1)]dωdv′dv′1.

(1.23)

According to remark 1.2.5, the Jacobian of the transformation Tω is 1, so we can
replace dv′dv′1 by dvdv1 and obtain∫

R3

h(v)Q12(f1, f2)(v)dv =

∫
R3×R3×S2

1

m1
B12(|v − v1|, ω)(−h(v′))

·[f1(v′)f2(v′1)− f1(v)f2(v1)]dωdvdv1,

(1.24)

∫
R3

h(v)Q12(f1, f2)(v)dv =

∫
R3×R3×S2

1

m2
B21(|v − v1|, ω)(−h(v′1))

·[f2(v′)f1(v′1)− f2(v)f1(v1)]dωdvdv1.

(1.25)

We add (1.18), (1.19), (1.24) and (1.25) and use B12 = B21.∫
R3

h(v)Q12(f1, f2)(v)dv

=
1

4

∫
R3

([(h(v)− h(v′))Q12(f1, f2)] + [(h(v1)− h(v′1))Q21(f2, f1)])dv.

(1.26)

If we do the same for the integral
∫
g(v)Q21(f2, f1)dv, we obtain∫

R3

g(v)Q21(f2, f1)(v)dv

=
1

4

∫
R3

([(g(v1)− g(v′1))Q12(f1, f2)] + [(g(v)− g(v′))Q21(f2, f1)])dv.

(1.27)

Again an additional exchange of primed and unprimed variables in the parts with
primed velocities in the arguments of f1, f2 in Q12, Q21 leads to∫

R3

h(v)Q12(f1, f2)(v)dv =
1

2

∫
R3×R3×S2

B12(|v − v1|, ω)

·[ 1

m1
f1(v)f2(v1)(h(v′)− h(v)) +

1

m2
f2(v)f1(v1)(h(v′1)− h(v1))]dωdvdv1.

(1.28)
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1.3 The Boltzmann equation for gas mixtures

As a consequence we see that
∫
R3 h(v)Q12(f1, f2)(v)dv = 0 if h satisfies the equation

h(v) = h(v′) and h(v1) = h(v′1).

Obviously the function h(v) = 1 is a solution. So we have conservation of the number
of particles of species 1 in interactions with species 2.
We can do the same for

∫
R3 g(v)Q21(f2, f1)dv and get∫

R3

g(v)Q21(f2, f1)(v)dv =
1

2

∫
R3×R3×S2

B12(|v − v1|, ω)

·[ 1

m2
f2(v)f1(v1)(g(v′)− g(v)) +

1

m1
f1(v)f2(v)(g(v′1)− g(v1))dvdv1dω.

(1.29)

If we add (1.28) and (1.29), we see∫
R3

(h(v)Q12(f1, f2) + g(v)Q21(f2, f1)(v))dv =
1

2

∫
R3×R3×S2

B12(|v − v1|, ω)

·[ 1

m2
f2(v)f1(v1)(h(v′1)− h(v1) + g(v′)− g(v))

+
1

m1
f1(v)f2(v1)(h(v′)− h(v) + g(v′1)− g(v1))]dvdv1dω,

(1.30)

and observe that the choice of h(v) = m1v or h(v) = m1|v|2 and g(v) = m2v
or g(v) = m2|v|2 leads to conservation of momentum (consequence 1.2.1) and
conservation of energy (consequence 1.2.2). So the properties of conservation of
total momentum and total energy are also satisfied.

The names conservation of the number of particles, conservation of total momen-
tum and conservation of total energy will be motivated in the following theorem.

Theorem 1.3.3 (Macroscopic equations). If f1, f2 ∈ L∞(dv) decay fast enough to
zero in the v variable and are a solution to (1.14) in the sense of distributions, they
satisfy the following local macroscopic equations.

∂tn1 +∇x · (n1u1) = 0,

∂tn2 +∇x · (n2u2) = 0,

∂t(m1n1u1) +∇x · P1 +∇x · (m1n1u1 ⊗ u1) =

∫
m1Q12(f1, f2)vdv,

∂t(m2n2u2) +∇x · P2 +∇x · (m2n2u2 ⊗ u2) =

∫
m2Q21(f2, f1)vdv,

∂t

(
m1

2
n1|u1|2 +

3

2
n1T1

)
+∇x ·Q1 =

∫
Q12(f1, f2)

m1

2
|v|2dv,

∂t

(
m2

2
n2|u2|2 +

3

2
n2T2

)
+∇x ·Q2 =

∫
Q21(f2, f1)

m2

2
|v|2dv.
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Proof. If we integrate the equation (1.14) for species 1 with respect to v and use the
conservation property (1.15) and theorem 1.3.1, we get:∫

∂tf1(x, v, t)dv +

∫
∇x · (vf1)dv = 0.

This is equivalent to

∂tn1 +∇x · (n1u1) = 0,

if we use the definitions of the number density and the mean velocity given by the
definitions 1.3.2 and 1.3.3, respectively. We can do the same with the equation for
f2. In this case we get

∂tn2 +∇x · (n2u2) = 0.

Multiplying the equation (1.14) for species 1 by m1v and integrating it with respect
to the velocity v, leads to

m1

∫
v∂tf1dv +m1

∫
v∇x · (vf1)dv =

∫
m1Q12(f1, f2)vdv.

In the first and in the second term we formally exchange derivative and integration
and obtain

m1∂t(n1u1) +∇x ·
∫
m1v ⊗ vf1dv.

So the equation is equivalent to

m1∂t(n1u2) +∇x ·
∫
m1v ⊗ vf1dv =

∫
Q12(f1, f2)vdv.

With the definition of the pressure tensor given by definition 1.3.7, the second term
turns into

∇x · P1 +∇x · (m1n1u1 ⊗ u1).

So all in all, we get

∂t(m1n1u1) +∇x · P1 +∇x · (m1n1u1 ⊗ u1) =

∫
m1Q12(f1, f2)vdv.

We can do the same with f2 and obtain

∂t(m2n2u2) +∇x · P2 +∇x · (m2n2u2 ⊗ u2) =

∫
m2Q21(f2, f1)vdv.

Multiplying the equation (1.14) for species 1 by m1

2 |v|
2 and integrating it with respect

to v leads to

m1

2

∫
|v|2∂tf1dv +

m1

2

∫
|v|2∇x · (vf1)dv =

∫
Q12(f1, f2)

m2

2
|v|2dv. (1.31)
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In the first two terms we formally exchange derivative and integration to obtain

∂t

(
m1

2
n1|u1|2 +

3

2
n1T1

)
+∇x ·

∫
m1v|v|2f1dv.

So the equation (1.31) is equivalent to

∂t

(
m1

2
n1|u1|2 +

3

2
n1T1

)
+∇x ·

∫
m1v|v|2f1dv =

∫
Q12(f1, f2)

m1

2
|v|2dv.

With the definition of the energy flux given by the definition 1.3.6 we get

∂t

(
m1

2
n1|u1|2 +

3

2
n1T1

)
+∇x ·Q1 =

∫
Q12(f1, f2)

m1

2
|v|2dv.

So all in all, we get the system of partial differential equations from theorem 1.3.3.

Corollary 1.3.4. If f1, f2 ∈ L∞(dv) decay fast enough to zero in the v variable and
are a solution to (1.14) in the sense of distributions, they satisfy the following local
macroscopic conservation laws.

∂tn1 +∇x · (n1u1) = 0,

∂tn2 +∇x · (n2u2) = 0,

∂t(m1n1u1 +m2n2u2) +∇x · (P1 + P2) +∇x · (m1n1u1 ⊗ u1 +m2n2u2 ⊗ u2) = 0,

∂t(
m1

2
n1|u1|2 +

m2

2
n2|u2|2 +

3

2
n1T1 +

3

2
n2T2) +∇x · (Q1 +Q2) = 0.

Proof. We take the equations from theorem 1.3.3 and add the third and the fourth
one, and the fifth and the sixth one. Then we use the conservation properties (1.16)
and (1.17).

The system in theorem 1.3.3 describes conservation of the number of particles
and balance laws for the momentum and the energy. The system in corollary 1.3.4
describes conservation of the number of particles, total momentum and total energy.
Note that both systems of macroscopic equations are not closed since we have more
unknowns than equations.

The H-theorem, entropy inequality and equilibrium

Another property of the Boltzmann equation is that it admits an entropy. In order to
prove this we need the following three lemmas.

Lemma 1.3.5. Let φ > 0 be a measurable function such that
∫
R3(1 + |v|2)φ(v)dv <∞.

If

φ(v)φ(v1) = φ(v′)φ(v′1), (1.32)

for a.e. (v, v1, ω) ∈ R3 × R3 × S2, then φ is a Maxwell distribution.
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The proof is given in [46, 47] and is a special case of the proof shown next with
two different functions φ1 and φ2.

Lemma 1.3.6. Let φ1, φ2 > 0 be two measurable functions such that
∫
R3(1+|v|2)φ1(v)dv

<∞ and
∫
R3(1 + |v|2)φ2(v)dv <∞. If

φ1(v)φ2(v1) = φ1(v′)φ2(v′1), (1.33)

for a.e. (v, v1, ω) ∈ R3 ×R3 × S2, then φ1 and φ2 are Maxwell distributions with equal
mean velocity and temperature.

Before we prove this lemma, let us illustrate the shape of a Maxwell distribution
(see figure 1.3).

Definition 1.3.8 (Maxwell distribution). A Maxwell distribution is a distribution of
the form

M(v) = C exp

(
−|v − U |

2

A

)
,

where C,A ∈ R+, U ∈ R3. If C,A and U are functions of x and t, M(x, v, t) is called
a local Maxwell distribution.

If the integrals from definition 1.3.2, 1.3.3 and 1.3.4 of the Maxwell distribution
coincide with the integrals from 1.3.2, 1.3.3 and 1.3.4 of the distribution function
itself, we obtain the form

Mk(v) =
nk√

2πTk/mk
3 exp

(
−|v − uk|

2

2Tk/mk

)
. (1.34)

So lemma 1.3.6 tells that if the condition (1.33) for a.e. (v, v1, ω) ∈ R3 × R3 × S2 is
satisfied then φ1, φ2 are of the form

φ1(v) =
n1√

2πT/m1
3 exp

(
−|v − u|

2

2T/m1

)
, φ2(v) =

n2√
2πT/m2

3 exp

(
−|v − u|

2

2T/m2

)
,

with a common value u and T still depending on x and t. According to the definitions
1.3.3 and 1.3.4, this has the physical meaning of a common mean velocity and
temperature. First, we will prove lemma 1.3.6, and then we will conclude that the
condition (1.33) characterizes the equilibrium. So finally, we will see that Maxwell
distributions with common velocity and temperature are the expected distributions
in thermodynamic equilibrium.
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Figure 1.3: Maxwell distribution. In this figure you can see a Maxwell distribution of the velocities for fixed x and t.
The centre of this distribution is at the mean velocity, meaning v = u(x, t) and the width of the distribution is related
to the temperature T (x, t).

Proof of lemma 1.3.6. After a translation and a multiplication by a constant, φ2 is
supposed to satisfy ∫

R3

φ2(v)dv = 1,

∫
R3

vφ2(v)dv = 0. (1.35)

Now we take the Fourier transform of

φ1(v)φ2(v1) = φ1(v′)φ2(v′1),

which leads for almost every ω ∈ S2 to

φ̂1(ξ)φ̂2(ξ1) =

∫
R3

∫
R3

φ1(v′)φ2(v′1)e−iξ·v−iξ1·v1dvdv1.

Now we change coordinates by (v, v1) 7→ (v′, v′1) as in the proof of the conservation
properties 1.15, 1.16 and 1.17. For this, we take the transformation in corollary 1.2.5
and obtain

φ̂1(ξ)φ̂2(ξ1) =

∫
R3

∫
R3

φ1(v)φ2(v1)e−iξ·v−iξ1·v1e
i
(

2m2
m1+m2

ξ− 2m1
m1+m2

ξ1
)
·ω[(v−v1)·ω]

dvdv1.

(1.36)

The change of the coordinates is possible due to remark 1.2.5. Let ξ, ξ1 be fixed.
Now we differentiate the equality (1.36) with respect to ω at any ω∗ orthogonal to
m2ξ −m1ξ1. This leads to

0 =

∫
R3

∫
R3

(m2ξ −m1ξ1)φ1(v)φ2(v1)e−iξ·v−iξ1·v1(v − v1) · ω∗dvdv1, (1.37)

using (m2ξ −m1ξ1) · ω∗ = 0 in the exponential function. Since

∇ξφ̂1(ξ)φ̂2(ξ1) =

∫
R3

∫
R3

φ1(v)φ2(v1)e−iξ·v−iξ1·v1(−iv)dvdv1,

and
∇ξ1 φ̂1(ξ)φ̂2(ξ1) =

∫
R3

∫
R3

φ1(v)φ2(v1)e−iξ·v−iξ1·v1(−iv1)dvdv1,
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for any ω∗ orthogonal to m2ξ −m1ξ1 and therefore

(∇ξ −∇ξ1)φ̂1(ξ)φ̂2(ξ1) =

∫
R3

∫
R3

φ1(v)φ2(v1)e−iξ·v−iξ1·v1i(v1 − v)dvdv1, (1.38)

for any ω∗ orthogonal tom2ξ−m1ξ1. Now, we use Grassmann’s identity (see appendix
A.1) to deduce

ω∗ ×
[
(m2ξ −m1ξ1)×

(
(∇ξ −∇ξ1)φ̂1(ξ)φ̂2(ξ1)

)]
= ω∗ ·

(
(∇ξ −∇ξ1)φ̂1(ξ)φ̂2(ξ1)

)
(m2ξ −m1ξ1)

− ω∗ · (m2ξ −m1ξ1) (∇ξ −∇ξ1)φ̂1(ξ)φ̂2(ξ1) = 0.

The term ω∗ · (m2ξ −m1ξ1) (∇ξ − ∇ξ1)φ̂1(ξ)φ̂2(ξ1) is equal to zero since ω∗ is or-

thogonal to m1ξ − m1ξ1. The term ω∗ ·
(

(∇ξ −∇ξ1)φ̂1(ξ)φ̂2(ξ1)
)

(m2ξ − m1ξ1) is

equal to zero since it is equal to ω∗ · (1.38) in the direction of (m2ξ −m1ξ1) which
is equal to ω∗ times the right-hand side of (1.37). According to the left-hand side
of (1.37) this is equal to zero. Now either ω∗ is parallel to (m1ξ −m2ξ1)× ((∇ξ −
∇ξ1)φ̂1(ξ)φ̂2(ξ1)) or m2ξ −m1ξ1 is parallel to (∇ξ −∇ξ1)φ̂1(ξ)φ̂2(ξ1). But since ω∗
is an arbitrary orthogonal vector to m2ξ −m1ξ1, it can also be non-orthogonal to
(m1ξ −m2ξ1)× ((∇ξ −∇ξ1)φ̂1(ξ)φ̂2(ξ1)). So

(∇ξ −∇ξ1)φ̂1(ξ)φ̂2(ξ1) is linearly dependent to m2ξ −m1ξ1 for all ξ, ξ1 ∈ R3.
(1.39)

Choose ξ 6= 0 and ξ1 = 0. Then according to the definition of the Fourier transform,
we have

∇ξφ̂1(ξ) · φ̂2(0)− φ̂1(ξ)∇ξ1 φ̂2(0) = ∇ξφ̂1(ξ)

∫
R3

φ2(v)dv − φ̂1(ξ) ·
∫
R3

(−iv)φ2(v)dv.

With the normalization (1.35), we get

∇ξφ̂1(ξ) · φ̂2(0)− φ̂1(ξ)∇ξ1 φ̂2(0) = ∇ξφ̂1(ξ).

Together with (1.39), we conclude that ∇ξφ̂1(ξ) is linearly dependent to ξ.

This means that φ̂1 is of the form

φ̂1(ξ) = ψ1(|ξ|2).

We replace φ̂1 by ψ1 in (1.39) and observe that

ψ′1(|ξ|2)φ̂2(ξ1)ξ − ψ1(|ξ|2)∇ξ1 φ̂2(ξ1) is linearly dependent to m2ξ −m1ξ1.
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1.3 The Boltzmann equation for gas mixtures

Choosing ξ = 0 and using ψ1(|ξ|2) = φ1(ξ) > 0, we get ∇ξ1 φ̂2(ξ1) is linearly de-
pendent to ξ1, and therefore φ̂2 is of the form

φ̂2(ξ1) = ψ2(|ξ1|2).

So again we get

ψ′1(|ξ|2)ψ2(|ξ1|2)ξ − ψ1(|ξ|2)ψ′2(|ξ1|2)ξ1 is linearly dependent to m2ξ −m1ξ1.

This is equivalent to

ψ′1(|ξ|2)ψ2(|ξ1|2)
m2

m2ξ − ψ1(|ξ|2)ψ′2(|ξ1|2)
m1

m1ξ1 is linearly dependent to m2ξ −m1ξ1.

Whenever ξ and ξ1 are not linearly dependent, i.e. for a dense subset of all ξ, ξ1 ∈ R3,
we then have

m1ψ
′
1(|ξ|2)ψ2(|ξ1|2) = m2ψ1(|ξ|2)ψ′2(|ξ1|2).

This is equivalent to the equality

m1
ψ′1(|ξ|2)

ψ1(|ξ|2)
= m2

ψ′2(|ξ1|2)

ψ2(|ξ1|2)
.

Since the left-hand side is independent of ξ1 and the right-hand side is independent
of ξ, both sides are equal to a constant and we get that ψ1 and ψ2 are of the form

ψ1(r) = e−αr,

ψ2(r) = e−βr,

for r ∈ R+
0 and α = m2

m1
β. This means that both φ1 and φ2 are Maxwell distributions.

If we do a re-translation in φ2 to get
∫
R3 vφ2(v)dv = u2, the function φ1 is then

transformed in the same way, so they have the same velocity. The factors α and
β are inverted by doing a Fourier transformation, so for φ2 and φ1 we have the
relation α = m1

m2
β, this means m1

T1
= m1

m2

m2

T2
for α = m1

T1
from which we can deduce

T1 = T2.

Lemma 1.3.7. Assume y, z ∈ Rn. Then we have the following inequality

(z − y) ln
y

z
≤ 0,

with equality if and only if z = y.

Proof. We consider the term
(z − y) ln

y

z
.

For z > y, the first factor is positive, but the logarithm is negative. For y > z, the
logarithm is positive but the first factor is negative. In both cases the whole term is
negative. We have equality if and only if z = y.
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1 Fundamentals

With these three lemmas we can prove the following inequalities which will result
in an inequality for an entropy.

Theorem 1.3.8 (H-theorem of the single collision operator). Let f ∈ L∞(dv) be a
function decaying fast enough at infinity, f ≥ 0, and

∫
(1 + |v|2)f(v)dv <∞, then∫

ln f Qkk(f, f)dv ≤ 0 for k = 1, 2,

with equality if and only if f is a Maxwell distribution.

The proof is given in [46, 47, 83] and is a special case of the proof shown next
for the collision operators describing collisions of one species with the other one.

Theorem 1.3.9 (H-theorem of the mixture collision operators). Let f1, f2 ∈ L∞(dv)
be two functions decaying fast enough at infinity, f1, f2 ≥ 0, and

∫
(1+|v|2)f1(v)dv <∞

and
∫

(1 + |v|2)f2(v)dv <∞, then∫
(ln f1 Q12(f1, f2) + ln f2 Q21(f2, f1)) dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean velocity
and temperature.

Proof. We add equations (1.26) and (1.27), insert the definitions of Q12 and Q21 and
choose h(v) = ln f1(v) and g(v) = ln f2(v) from the proof of properties 1.15, 1.16
and 1.17 and get∫

R3

(h(v)Q12(f1, f2) + g(v)Q21(f2, f1)) dv =
1

2

∫
R3×R3×S2

B12(|v − v1|, ω)

·
[ 1

m2
(f2(v′)f1(v′1)− f2(v)f1(v1)) ln

f1(v1)f2(v)

f1(v′1)f2(v′)

+
1

m1
(f1(v′)f2(v′1)− f1(v)f2(v1)) ln

f1(v)f2(v1)

f1(v′)f2(v′1)

]
dvdv1dω.

(1.40)

Now, we apply lemma 1.3.7 choosing y = f1(v1)f2(v) and z = f2(v′)f1(v′1) in the
first term of the sum and y = f1(v)f2(v1) and z = f2(v′1)f1(v′) in the second term
of the sum. Then, we can deduce

∫
R3 (h(v)Q12(f1, f2) + g(v)Q21(f2, f1)(v)) dv ≤ 0,

because B12 is non-negative, with equality if and only if

f1(v1)f2(v) = f1(v′1)f2(v′).

The equality from the second term of the sum is the same just exchanging the
notation. In the case of equality, choose φ1 = f1 and φ2 = f2 in lemma 1.3.6. Then
we obtain that f1 and f2 are Maxwell distributions with equal mean velocity and
temperature.
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1.3 The Boltzmann equation for gas mixtures

In the following we will see three things. We will consider the physical entropy
and see that the previous theorem leads to an inequality for this entropy. We will
study the equality in this entropy and are able to characterize it with the help of
lemma 1.3.6 as Maxwell distributions with equal mean velocity and temperature. In
the next part, we want to define equilibrium distributions and finally, we will observe
that they correspond to the Maxwell distributions found in the H-theorem. Let’s start
with the entropy inequality.

Definition 1.3.9 (Physical entropy). The quantity

H(f1, f2) :=

∫
(f1 ln f1 + f2 ln f2)dv

defines the negative of the physical entropy in statistical mechanics.

For a motivation of choosing this expression as the entropy see section 3.4.2 in
[81]. It is linked to the number of possibilities to distribute N particles into the cells
of phase space. In the following we deduce an inequality for this entropy.

Corollary 1.3.10. Let f1, f2 ∈ L∞(dv) be a solution to (1.14) in the sense of distribu-
tions decaying fast enough at infinity in v, f1, f2 ≥ 0, and

∫
(1 + |v|2)f1(v)dv <∞ and∫

(1 + |v|2)f2(v)dv <∞, then

∂t

(∫
f1 ln f1dv +

∫
f2 ln f2dv

)
+∇x ·

(∫
vf1 ln f1dv +

∫
vf2 ln f2dv

)
≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean velocity
and temperature.

Proof. We multiply the Boltzmann equation (1.14) for species 1 by ln f1, the Boltz-
mann equation (1.14) for species 2 by ln f2, add the result and integrate it with
respect to v, use integration by parts and conservation of the number of particles
(equation (1.15) and theorem 1.3.1) on the left-hand side and the theorems 1.3.8
and 1.3.9 on the right-hand side.

The physical meaning of this is the following. In the space-homogeneous case,
meaning f1, f2 do not depend on x, the entropy is a non-increasing function. This
corresponds to the second law of thermodynamics.

The fact that H is a decreasing function unless f1, f2 are Maxwell distributions
with a common mean velocity and temperature, indicates that f1, f2 possibly tend to
such a function when t→∞. The final state will presumably be an equilibrium state.

Definition 1.3.10 (Equilibrium). The system is in equilibrium if and only if f does
not depend on x and t.

This means that the left-hand side of the Boltzmann equation vanishes, so we have
to consider the equationsQ11(f1, f1)+Q12(f1, f2) = 0 andQ22(f2, f2)+Q21(f2, f1) =
0.
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1 Fundamentals

Corollary 1.3.11 (Structure of the equilibrium). Let f1, f2 ∈ L∞(dv) be a solution
to (1.14) in the sense of distributions and assume f1, f2 > 0. From the equations
Q11(f1, f1) + Q12(f1, f2) = 0 and Q22(f2, f2) + Q21(f2, f1) = 0 we can deduce that
f1 and f2 are Maxwell distributions with equal velocity and temperature, that means
u1 = u2 and T1 = T2.

Proof. If Q11(f1, f1) + Q12(f1, f2) = 0 and Q22(f2, f2) + Q21(f2, f1) = 0, then
Q11(f1, f1) + Q12(f1, f2) + Q22(f2, f2) + Q21(f2, f1) = 0 and so we have equality
in the H-theorems 1.3.8 and 1.3.9.

This shows that the equality in the H-theorem coincides with the distribution in
equilibrium. So we can formulate the H-theorem in the space homogeneous case in
the following equivalent version: We expect that the entropy H decreases in time
until it reaches its equilibrium distribution which is a Maxwell distribution.

The last two lemmas will lead to a comparison of the entropy of a species with
the entropy obtained in equilibrium.

Lemma 1.3.12. Let z, y be arbitrary positive real numbers. Consider the function
h : R+ → R, h(x) := x lnx− x. Then h is strictly convex and the following inequality is
satisfied

(z − y) ln y ≤ z ln z − y ln y + y − z,

or equivalently

z ln y ≤ z ln z + y − z.

Proof. If we compute the derivatives of h, we obtain h′(x) = lnx and h′′(x) = 1
x . So

h is strictly convex for x > 0 and we have h′(y)(z − y) ≤ h(z)− h(y) with equality if
and only if z = y.

Lemma 1.3.13 (Estimate of the entropy). Let f1, f2 ∈ L∞(dv) be two functions
decaying fast enough at infinity, f1, f2 ≥ 0, and

∫
(1 + |v|2)f1(v)dv < ∞ and

∫
(1 +

|v|2)f2(v)dv <∞, then∫
fk ln fkdv ≥

∫
Mk lnMkdv, for k = 1, 2,

where Mk is the local Maxwell distribution with the same density, mean velocity and
temperature as fk.

Proof. If we compute lnMk, we obtain lnMk = ln nk√
2π

Tk
mk

3 − |v−uk|
2

2
Tk
mk

. We observe

that lnMk is a linear combination of 1, v and |v|2. Therefore
∫

(fk−Mk) lnMkdv = 0
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1.4 The BGK model for one species

since fk and Mk have the same density, mean velocity and temperature. Using this
and lemma 1.3.12, we get∫

fk ln fkdv −
∫
Mk lnMkdv

=

∫
fk ln fkdv −

∫
Mk lnMkdv −

∫
(fk −Mk) lnMkdv

=

∫
fk ln fkdv −

∫
fk lnMkdv

≥
∫

(fk −Mk)dv = 0.

1.4 The BGK model for one species

For one species of particles the Boltzmann equation reduces to

∂tf + v · ∇xf = Q(f, f),

for the unknown f(x, v, t). The collision operator corresponds to an operator describ-
ing the interactions of the gas with itself as Q11 and Q22 in the previous section. The
collision operator in the Boltzmann equation is very complex. So Bathnagar, Gross
and Krook [16] invented a simplification of the collision operator which has still the
same main properties mentioned in the previous section as the original collision term
Q. It is called BGK model. It satisfies the conservation of the number of particles,
momentum and energy. The BGK model has an H-theorem and the same structure in
equilibrium as the Boltzmann equation. It is given by

∂tf + v · ∇xf = νn(M − f), (1.41)

where ν(x, t)n(x, t) is the collision frequency and M the Maxwell distribution which
has the same density, mean velocity and temperatures as f given by (1.34). Moreover
BGK models give rise to efficient numerical computations [72, 41, 35, 12, 34, 13, 28].
In [64], the linearized BGK equation is considered and the uncertainties in the case
of modelling errors are quantified by Klingenberg, Li and Pirner.

1.4.1 Motivation of the BGK model

The aim of this section is to motivate the choice and structure of the BGK model and
the choice of the collision frequency ν. First, we will see under which assumptions
and simplifications we can derive the BGK-model from the Boltzmann equation. This
is given in [81]. Then, we will see the meaning of the equation by considering a
minimization problem of the entropy which also leads to the BGK model. This is
given in [2].
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1 Fundamentals

Derivation from the Boltzmann equation

The first motivation of the BGK model is to simplify the collision operator in the
Boltzmann equation making some simplifying approximations. The collision term in
the Boltzmann equation for one species is given by

Q(f, f) =
1

m

∫
R3

∫
S2

B(|v − v1|, ω)(f(x, v′, t)f(x, v′1, t)− f(x, v, t)f(x, v1, t))dωdv1.

In section 1.3.3 we observed that the H-theorem indicates that due to interactions
the distribution function f tend to relax towards a Maxwell distribution. Now, we
assume that even after one interaction the distribution function becomes a Maxwell
distribution. So, we replace the distribution functions with velocities after the collision
f(x, v′, t) and f(x, v′1, t) in the collision operator by its local Maxwell distribution M .
So we get

Q̂M (f, f) =
1

m

∫
R3

∫
S2

B(|v − v1|, ω)(M(x, v′, t)M(x, v′1, t)− f(x, v, t)f(x, v1, t))dωdv1.

Because of conservation of momentum and kinetic energy (1.10), we have

M(x, v′, t)M(x, v′1, t) = M(x, v, t)M(x, v1, t),

and so we get

Q̃M (f, f) =
1

m

∫
R3

∫
S2

B(|v − v1|, ω)(M(x, v, t)M(x, v1, t)− f(x, v, t)f(x, v1, t))dωdv1

=
1

m
(M(x, v, t)

∫
R3

∫
S2

B(|v − v1|, ω)M(x, v1, t)dωdv

− f(x, v, t)

∫
R3

∫
S2

B(|v − v1|, ω)f(x, v1, t)dωdv1).

Now we assume that the difference between the two integrals can be neglected and
get

QBGK(f, f) = νn(M − f),

where ν is given by

νn =
1

m

∫ ∫
M(x, v1, t)B(|v − v1|, ω)dωdv1.

With this choice of the collision frequency ν, the conservation properties are only
fulfilled when ν does not depend on the velocity v, so one either has to consider
Maxwellian molecules, where B does not depend on |v − v1| or replace ν by a mean
collision frequency ν̄ = 1

n

∫
νfdv.
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1.4 The BGK model for one species

Minimization of the entropy

The other possible way to motivate the BGK model is due to a minimization problem
of the entropy presented in [2]. Suppose we have a model of the form

∂tf + v · ∇xf = νn(G(f)− f), (1.42)

for a function G(f) which we will determine later. The meaning of the term on
the right-hand side is the following. Suppose we are in the space homogeneous
case. Then the meaning of the term on the right-hand side is a relaxation of the
function f towards the function G(f) in time. If f is smaller than G(f), in the
space-homogeneous case the time derivative of f is positive. So f will increase. If f is
larger than G(f), the time derivative is negative so f will decrease. This corresponds
to a relaxation of f towards the function G(f). See also figure 1.4.

 

f

(f)G

Figure 1.4: Relaxation of f towards the function G(f). The arrows illustrate the time derivative of f under the time
evolution of equation (1.42) in the space-homogeneous case.

Now, the idea is to determine the function G(f) as a solution to a minimization
problem of the entropy. We consider the following problem

S(n, u, T ) = min
g∈χ

∫
H̃(g)dv, (1.43)

where H̃(g) is given by H̃(g) = g ln g and χ is the following set

χ = {g ≥ 0, (1 + |v|2)g ∈ L1(dv),

∫
gdv = n,

∫
vgdv = nu,

∫
v ⊗ vgdv = nu⊗ u+ n

T

m
1}.

In the case of one species we omit the index in the density, the mean velocity and the
temperature given by the definitions 1.3.2, 1.3.3 and 1.3.5, respectively. We want to
find the solution to (1.43) and choose G(f) as the minimizer to this problem. The
problem is motivated by the H-theorem for the Boltzmann equation, since we expect
from it that f relaxes to a function G(f). The set χ can be motivated in the following
way. We expect that during the relaxation process the density n, the momentum nu
and the energy 1

2n(m|u|2 + 3T ) should be conserved, so the solution to (1.43) should
have the same density, momentum and energy as f . We observe that we assume
more to the function g ∈ χ than to have just the same energy as f . We also determine
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1 Fundamentals

the off-diagonal terms of
∫
v ⊗ vgdv. The physical meaning of this is the following. If

we compute the integral m
∫
v⊗ vfdv, we get mnu⊗ u+P. Therefore the restriction

on g ∈ χ means that we expect that in equilibrium the tensor P becomes diagonal.
We will observe that the solution to this problem is a Maxwell distribution.

Theorem 1.4.1. The unique minimizer to (1.43) is the Maxwell distribution M given
by (1.34).

Proof. The proof is given in [2]. For the convenience of the reader we will repeat it
here. The aim is to show that∫

H̃(M)dv <

∫
H̃(g)dv for all g ∈ χ with g 6= M.

Since H̃ is a strictly convex function, we get

H̃(g) > H̃(M) + H̃ ′(M)(g −M) for all g ∈ χ with g 6= M.

Here ′ denotes the Fréchet derivative of H̃ with respect to g. We are done when we
show that

∫
H̃ ′(M)(g −M)dv = 0. If we compute H̃ ′(M), we get

H̃ ′(M) = lnM + 1 =
n√

2π Tm

3 −
m|v − u|2

T
+ 1.

So we observe that H̃ ′(M) is a linear combination of 1, v and |v|2. Therefore, the
integral

∫
H̃ ′(M)(g −M)dv vanishes since g and M have the same density, mean

velocity and energy.

1.4.2 Fundamental properties of the BGK equation

The reason for this model was to find a simplification of the complicated Boltzmann
collision operator but to keep the main features of the Boltzmann collision operator. In
this section we prove that the BGK operator for one species satisfies the conservation
properties and the H-theorem.

Theorem 1.4.2 (BGK-model). Assume f ∈ L∞(dv) to be a solution of (1.41) decaying
fast enough to zero for |v| → ∞ and ν, f > 0. Then the right-hand side of the equation
(1.41) has the same main properties (conservation properties, H-theorem and structure
of equilibrium) as the Boltzmann collision operator.

Proof. The proof is given in section 3.6 in [81]. For the convenience of the reader we
want to repeat it here. First, we will discuss the conservation properties, then the
H-theorem. Since ν does not depend on the velocity v, the conservation properties as
in theorem 1.3.1 are satisfied because f and M have the same density, mean velocity
and temperature.
For the same reason, we have

νn

∫
lnM (M − f)dv = 0,
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1.4 The BGK model for one species

because lnM is a linear combination of 1, v and |v|2, so∫
QBGK(f, f)(v)dv = νn

∫
ln f (M − f)dv

= νn

∫
ln f (M − f)dv − νn

∫
lnM (M − f)dv

= νn

∫
ln

f

M
(M − f)dv.

With lemma 1.3.7 we can conclude∫
QBGK(f, f)(v)dv = νn

∫
ln

f

M
(M − f)dv ≤ 0,

which ensures the property of the H-theorem.
The structure of the equilibrium is clear, because from ν(M − f) = 0, we can deduce
f = M .

33





Chapter 2

A BGK model for mixtures

In applications one often has to deal with gas mixtures instead of a single gas. For
example, the air is a gas mixture. Therefore, in this chapter, our attempt is to extend
the BGK model for one species described in the previous chapter to gas mixtures. For
simplification we consider only two species. This model is also presented in a paper
by Klingenberg, Pirner, Puppo in [61].

In the literature one can find two types of BGK models for gas mixtures. Just like
the Boltzmann equation for gas mixtures contains a sum of collision terms on the
right-hand side, one type of BKG models also has a sum of BGK-type interaction terms
in the relaxation operator. Examples are the models of Gross and Krook [49], Hamel
[51], Asinari [6], Garzó, Santos, Brey [43], Sofena [79], see also Cercignani [24].
The other type of models contains only one collision term on the right-hand side.
Examples for this are Andries, Aoki and Perthame [1] and the models in [22, 48].

For the second type of model which was first presented by Andries, Aoki and
Perthame [1], they proved consistency of this type of model. They proved the conser-
vation properties, the positivity of the temperatures, the H-theorem and specified the
structure of equilibrium. Whereas for the first type of model this was not done before
in the literature, as far as we know. But the first type of BGK model for mixtures
is the extension to gas mixtures suggested by physicists and engineers and is still
used in numerical applications, see for example [67, 71]. In [54], the second type
of model is even seen as a simplification of the first model from a physical point of
view. The advantage of the first type of BGK model for mixtures from the physical
point of view is that the two different types of interactions, interactions of a species
with itself and interactions of a species with the other one, are still kept separated.
Therefore, we can still see how these different types of interactions influence the
macroscopic equations, the H-theorem and the trend to equilibrium. Especially, when
the particles of the two species are very different, then it is desirable to maintain their
contribution separately. But, as far as we know, there was no proof of the H-theorem
and the structure of equilibrium before for this first type of extension. In order to
close this gap, we now present a model which contains all the models of the first
type mentioned above as special cases. For this generalized model we then prove the
conservation properties, the positivity of all temperatures, the H-theorem and specify
the structure of equilibrium.

The outline of the chapter is as follows: in section 2.1 we will present the model
for two species and prove the conservation properties and the H-theorem and we
show the positivity of all temperatures. In section 2.2, we compare our model with
other models presented in the literature. First, we consider special cases of our model
and next we compare our model with the model of Andries, Aoki and Perthame [1].
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2 A BGK model for mixtures

2.1 A two species kinetic BGK model

In this section we will present the model for two species and prove the conservation
properties and the H-theorem. Further, we analyse the positivity of the temperatures
and characterize the structure of equilibrium.

2.1.1 The general form of the model

We will repeat the most important definitions such that it is possible to read this
chapter independently. For simplicity in the following we consider a mixture com-
posed of two different species. Thus, our kinetic model has two distribution functions
f1(x, v, t) > 0 and f2(x, v, t) > 0, where x ∈ R3 and v ∈ R3 are the phase space
variables and t ≥ 0 the time. We expect that they are determined by two equations
to describe their time evolution. Since we consider binary interactions, the particles
of one species can interact with either themselves or with particles of the other
species. In the model this is accounted for by introducing two interaction terms
in both equations. These considerations allow us to write formally the system of
equations for the evolution of the mixture. The following structure containing a sum
of the collision operator is also given in [25, 24]. We describe the time evolution of
the number distribution functions f1 and f2 by the Boltzmann equation with binary
interactions for two species of particles as in [25], chapter 6.2

∂tf1 + v · ∇xf1 = Q11(f1, f1) +Q12(f1, f2),

∂tf2 + v · ∇xf2 = Q22(f2, f2) +Q21(f2, f1),

where Qkl, k, l = 1, 2 are the collision operators for interactions of species k with
species l.

Furthermore, we relate the distribution functions to macroscopic quantities by
mean-values of fk ∫

fk(v)

 1
v

mk|v − uk|2

 dv =:

 nk
nkuk
3nkTk

 , (2.1)

where nk is the number density, uk the mean velocity and Tk the temperature which
is related to the pressure pk by pk = nkTk. Note that in this chapter we shall write
Tk instead of kBTk, where kB is Boltzmann’s constant.

2.1.2 Requirements on the collision operators

A model for the evolution of a mixture should satisfy the following conservation
properties:

Conservation of mass, momentum and energy of the individual species in interac-
tion with the species itself:

1.
∫
Qkk(fk, fk)dv = 0 for k = 1, 2,
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2.1 A two species kinetic BGK model

2.
∫
mkvQkk(fk, fk)dv = 0 for k = 1, 2,

3.
∫
mk|v|2Qkk(fk, fk)dv = 0 for k = 1, 2.

Conservation of total mass, momentum and energy:

1.
∫
Qkl(fk, fl)dv = 0 for k, l = 1, 2,

2.
∫

(m1vQ12(f1, f2) +m2vQ21(f2, f1))dv = 0,

3.
∫

(m1|v|2Q12(f1, f2) +m2|v|2Q21(f2, f1))dv = 0.

2.1.3 The BGK approximation

We are interested in a BGK approximation of the interaction terms. This leads us to
define equilibrium distributions not only for each species itself but also for the two
interspecies equilibrium distributions. Choose the collision terms Q11, Q12, Q21 and
Q22 in section 2.1.1 as BGK operators. Then the model can be written as:

∂tf1 + v · ∇xf1 = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂tf2 + v · ∇xf2 = ν22n2(M2 − f2) + ν21n1(M21 − f2),
(2.2)

with the Maxwell distributions

M1(x, v, t) =
n1√

2π T1

m1

3 exp

(
−|v − u1|2

2 T1

m1

)
,

M2(x, v, t) =
n2√

2π T2

m2

3 exp

(
−|v − u2|2

2 T2

m2

)
,

M12(x, v, t) =
n12√
2π T12

m1

3 exp

(
−|v − u12|2

2T12

m1

)
,

M21(x, v, t) =
n21√
2π T21

m2

3 exp

(
−|v − u21|2

2T21

m2

)
,

(2.3)

where ν11n1 and ν22n2 are the collision frequencies of the particles of each species
with itself, while ν12n2 and ν21n1 are related to interspecies collisions. The structure
of the collision terms ensures that if one collision frequency νkl tends to ∞, the
corresponding distribution function becomes a Maxwell distribution. In addition
at global equilibrium, the distribution functions become Maxwell distributions with
the same mean velocity and temperature (see later in section 2.1.8). The Maxwell
distributions M1 and M2 in (2.3) have the same macroscopic quantities (2.1) as
f1 and f2, respectively. With this choice, we guarantee the conservation of mass,
momentum and energy in interactions of one species with itself (see section 2.1.2).
The remaining parameters u12, u21, T12 and T21 will be determined using conservation
of total momentum and total energy, together with some symmetry considerations.
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2 A BGK model for mixtures

2.1.4 Relationship between the collision frequencies

Note, that in our model we have four collision frequencies ν11n1, ν22n2, ν12n2 and
ν21n1. In physical applications the functions ν11, ν22, ν12 and ν21 are often linked
by a constant. We will illustrate this in the case of a plasma in section 5.2.1. To
be flexible in choosing the relationship between the collision frequencies, we now
assume the relationship

ν12 = εν21, 0 < ε ≤ 1. (2.4)

For example, in the case of a plasma, we will see in section 5.2.1 that ε is given by
ε = m1

m2
. The restriction ε ≤ 1 is without loss of generality. If ε > 1, exchange the

index 1 and 2 and choose 1
ε as new ε.

2.1.5 Conservation properties

This section shows how the macroscopic quantities n12, n21, u12, u21, T12 and T21 in
the interspecies Maxwell distributions M12 and M21 have to be chosen in order to
ensure the macroscopic conservation properties.

Theorem 2.1.1 (Conservation of the number of particles of each species). Assume
that

n12 = n1 and n21 = n2, (2.5)

then∫
Q11(f1, f1)dv =

∫
Q12(f1, f2)dv =

∫
Q22(f2, f2)dv =

∫
Q21(f2, f1)dv = 0.

Proof. Since Mk and fk for k = 1, 2 have the same density according to the definition
in equation (2.1), we get∫

Qkk(fk, fk)dv =

∫
νkknk(Mk − fk)dv = 0.

The equality ∫
Q12(f1, f2)dv = ν12n2

∫
(M12 − f1)dv = 0,

holds provided that n12 = n1. Similarly for the second equation, if n21 = n2.

Theorem 2.1.2 (Conservation of total momentum). Assume the relationships (2.4)
and (2.5) hold and assume further that u12 is a linear combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R. (2.6)

Then we have conservation of total momentum∫
m1v[Q11(f1, f1) +Q12(f1, f2)]dv +

∫
m2v[Q22(f2, f2) +Q21(f2, f1)]dv = 0,
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2.1 A two species kinetic BGK model

provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1). (2.7)

Proof. The exchange of momentum of species 1 is given by

fm1,2 := m1

∫
vν11n1(M1 − f1)dv +m1

∫
vν12n2(M12 − f1)dv

= 0 +m1ν12n1n2(u12 − u1) = m1ν12n1n2(1− δ)(u2 − u1).

(2.8)

The exchange of momentum of species 2 is given by

fm2,1
:= m2ν21n2n1(u21 − u2). (2.9)

In order to get conservation of momentum we therefore need

m1ν12n1n2(1− δ)(u2 − u1) +m2ν21n2n1(u21 − u2) = 0,

which holds provided u21 satisfies (2.7) under the assumption that ν12 and ν21 satisfy
(2.4) and u12 satisfies (2.6).

Remark 2.1.1. If we write ε̃ = m1

m2
ε and δ̃ = 1− ε̃(1−δ) we obtain a similar structure

for u21 as for u12

u21 = δ̃u2 + (1− δ̃)u1.

Theorem 2.1.3 (Conservation of total energy). Assume (2.4), conditions (2.5), (2.6)
and (2.7) and assume that T12 is of the following form

T12 = αT1 + (1− α)T2 + γ|u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0. (2.10)

Then we have conservation of total energy∫
m1

2
|v|2(Q11(f1, f1) +Q12(f1, f2))dv+

∫
m2

2
|v|2(Q22(f2, f2) +Q21(f2, f1))dv = 0,

provided that

T21 =

[
1

3
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1− α)T1 + (1− ε(1− α))T2.

(2.11)

Proof. Using the energy exchange of species 1

FE1,2 :=

∫
m1

2
|v|2ν11n1(M1 − f1)dv +

∫
m1

2
|v|2ν12n2(M12 − f1)dv

= εν21
1

2
n2n1m1(|u12|2 − |u1|2) +

3

2
εν21n1n2(T12 − T1),
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2 A BGK model for mixtures

where we use (2.6) and (2.10). Analogously the energy exchange of species 2 towards
1 is

FE2,1
=

1

2
ν21m2n1n2(|u21|2 − |u2|2) +

3

2
ν21n1n2(T21 − T2).

Substitute u21 with (2.7) and T21 from (2.11). This permits to rewrite the energy
exchange terms as

FE1,2
= εν21

1

2
n2n1m1

[
(δ2 − 1)|u1|2 + (1− δ)2|u2|2 + 2δ(1− δ)u1 · u2

]
+

3

2
εν21n1n2

[
(1− α)(T2 − T1) + γ|u1 − u2|2

]
,

(2.12)

FE2,1 =
1

2
ν21m2n1n2

[(
(1− m1

m2
ε(1− δ))2 − 1

)
|u2|2 +

(
m1

m2
ε(δ − 1)

)2

|u1|2

+2(1− m1

m2
ε(1− δ))m1

m2
ε(1− δ)u1 · u2

]
+

3

2
ν21n1n2

[
ε(1− α)(T1 − T2)

+

(
1

3
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

)
|u1 − u2|2

]
.

(2.13)

Adding these two terms, we see that the total energy is conserved.

Remark 2.1.2. We have 0 ≤ 1− ε(1−α) ≤ 1 and 0 ≤ ε(1−α) ≤ 1, so that in (2.11)
the two terms with the temperatures are also a convex combination of T1 and T2.

Remark 2.1.3. The remaining free parameters can be fixed for specific situations.
For example, if we see the parameters α, δ, γ and ε from the model presented in this
chapter as functions of the masses m1 and m2, we can get more restrictions on these
parameters by physical considerations.

• In the limit m1

m1+m2
→ 0, we expect that u12 = u2 and T12 = T2, since we expect

that light particles are driven by the flow of the heavy particles, so they adapt
the velocity and the fluctuations to the mean velocity of the heavy particles. If
we look at (2.6), (2.7), (2.10) and (2.11), the definitions of u12, u21, T12 and
T21, we see in order to realize this, we need δ → 0, α→ 0 and γ → 0.

• In the limit m1

m1+m2
→ 1

2 , when the mass of the particles become indistin-
guishable, we expect T12 = T21 and u12 = u21. From u12 = u21 we obtain
δ = ε

ε+
m2
m1

by using (2.6) and (2.7). From T12 = T21 we obtain α = ε
1+ε

and γ = 1
3

ε
1+εm1(1 − δ)(m1

m2
ε(δ − 1) + δ + 1) by using (2.10) and (2.11). So

for getting equality in the limit when the masses of the two particles become
indistinguishable (m := m1 = m2), we need we need δ → ε

1+ε , α→ ε
1+ε and

γ → 1
3m

ε
(1+ε)2 .

• In the limit m1

m1+m2
→ 1, the heavy particles do not feel the other particles, so

we expect that we have no change in the mean velocity and in the temperature,
e.g u12 = u1 and T12 = T1. Here we need δ → 1, α→ 1 and γ → 0.
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2.1 A two species kinetic BGK model

2.1.6 Positivity of the temperatures

Theorem 2.1.4. Assume that f1(x, v, t), f2(x, v, t) > 0. Then all temperatures T1, T2,
T12 given by (2.10) and T21 given by (2.11) are positive provided that

0 ≤ γ ≤ m1

3
(1− δ)

[
(1 +

m1

m2
ε)δ + 1− m1

m2
ε

]
. (2.14)

Proof. T1 and T2 are positive as integrals of positive functions. T12 is positive because
by construction it is a convex combination of T1 and T2. For T21 we consider the
coefficients in front of |u1 − u2|2, T1 and T2. The term in front of T1 is positive by
definition. The positivity of the term in front of T2 is equivalent to the condition
α ≥ 1− 1

ε , which is satisfied since ε ≤ 1, the positivity of the term in front of |u1−u2|2
is equivalent to the condition (2.14).

Remark 2.1.4. According to the definition of γ, it is a non-negative number, so the
right-hand side of the inequality in (2.14) must be non-negative. This condition is
equivalent to

m1

m2
ε− 1

1 + m1

m2
ε
≤ δ ≤ 1. (2.15)

If the collision frequencies are linked as in (2.4) with ε = m2

m1
in the case of a

plasma, then the right-hand side of (2.14) is positive for 0 ≤ δ ≤ 1.

2.1.7 H-theorem for mixtures

Now, we want to show the H-theorem for our BGK model for mixtures.

Lemma 2.1.5. Assuming (2.10) and (2.11) and the positivity of the temperatures
(2.14), we have the following inequality

ε lnT12 + lnT21 ≥ ε lnT1 + lnT2. (2.16)

Proof. We start with the left-hand side of (2.16). First we insert the definition of T12

and T21 from (2.10) and (2.11). Since γ and the term in front of |u1 − u2|2 in (2.11)
are positive, we can use the monotonicity of the logarithm and get

ε lnT12 + lnT21

= ε ln
[
αT1 + (1− α)T2 + γ|u1 − u2|2

]
+ ln

[(1

3
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

)
|u1 − u2|2

+ ε(1− α)T1 + (1− ε(1− α))T2

]
≥ ε ln (αT1 + (1− α)T2) + ln (ε(1− α)T1 + (1− ε(1− α))T2) .
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2 A BGK model for mixtures

If we now use the concavity of the logarithm and the assumptions 0 ≤ α ≤ 1, ε ≤ 1,
the expression above can be bounded from below by

εα lnT1 + ε(1− α) lnT2 + (1− ε(1− α)) lnT2 + ε(1− α) lnT1,

which gives the inequality stated in lemma 2.1.5.

Theorem 2.1.6 (H-theorem for the mixture). Assume f1, f2 > 0. Assume the relation-
ship between the collision frequencies (2.4) , the conditions for the interspecies Maxwell
distributions (2.5) , (2.6), (2.7), (2.10) and (2.11) with α, δ 6= 1 and the positivity of
the temperatures (2.14), then∫

(ln f1 Q11(f1, f1) + ln f1 Q12(f1, f2))dv

+

∫
(ln f2 Q22(f2, f2) + ln f2 Q21(f2, f1))dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean velocity
and temperature.

Proof. The fact that
∫

ln fk Q(fk, fk) ≤ 0, k = 1, 2 for the single BGK-model was
shown in theorem 1.4.2. Note that in the proof it was not necessary that fk is a
solution to the BGK model for one species. It is only a property of the structure of the
BGK operator. So here, it is still true. We have equality if and only if f1 = M1 and
f2 = M2.
Let us define

S(f1, f2) := ν12n2

∫
ln f1 (M12 − f1)dv + ν21n1

∫
ln f2 (M21 − f2)dv.

The task is to prove that S(f1, f2) ≤ 0. Consider now S(f1, f2) and apply the
inequality in lemma 1.3.12 to each of the two terms in S.

S ≤ ν12n2

[∫
M12 lnM12dv −

∫
f1 ln f1dv −

∫
M12dv +

∫
f1dv

]

+ν21n1

[∫
M21 lnM21dv −

∫
f2 ln f2dv −

∫
M21dv +

∫
f2dv

]
,

with equality if and only if f1 = M12 and f2 = M21. Then u12 = δu1 + (1− δ)u2 = u1

from which we can deduce u1 = u2 = u21 = u12 and T1 = T2 = T12 = T21. That
means f1 and f2 are Maxwell distributions with equal mean velocity and temperature.
Since M12 and f1 have the same density and M21 and f2 have the same density, too,
the right-hand side reduces to

ν12n2

(∫
M12 lnM12dv −

∫
f1 ln f1dv

)
+ν21n1

(∫
M21 lnM21dv −

∫
f2 ln f2dv

)
.
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Since
∫
M lnMdv = n ln

(
n√
2πT
m

3

)
− 3

2n for M = n√
2πT
m

3 exp
(
− |v−u|

2

2T
m

)
, we have

that

ν12n2

∫
M12 lnM12dv + ν21n1

∫
M21 lnM21dv

≤ ν21n1

∫
M2 lnM2dv + ν12n2

∫
M1 lnM1dv,

(2.17)

provided that

ν12n2n1 ln
n1√

2π T12

m1

3 + ν21n2n1 ln
n2√

2π T21

m2

3

≤ ν12n2n1 ln
n1√

2π T1

m1

3 + ν21n2n1 ln
n2√

2π T2

m2

3 ,

which is equivalent to the condition (2.16) proven in lemma 2.1.5.
With this inequality we get

S(f1, f2) ≤ν12n2

[∫
M1 lnM1dv −

∫
f1 ln f1dv

]
+ ν21n1

[
M2 lnM2dv −

∫
f2 ln f2dv

]
≤ 0.

The last inequality follows from lemma 1.3.13. Here we also have equality if and
only if f1 = M1 and f2 = M2, but since we already noticed that equality also implies
f1 = M12 and f2 = M21, we also have T21 = T2 = T1 = T12 and u1 = u2 = u12 = u21.

Now, consider the total entropy H(f1, f2) from definition 1.3.9. We can compute

∂tH(f1, f2) +∇x ·
∫

(f1 ln f1 + f2 ln f2)vdv = S(f1, f2),

by multiplying the BGK equation (2.2) for species 1 by ln f1, the BGK equation (2.2)
for the species 2 by ln f2 and integrating the sum with respect to v.

Corollary 2.1.7 (Entropy inequality for mixtures). Assume f1, f2 > 0 to be a solution
to (2.2). Assume a fast enough decay of f to zero for v →∞. Assume relationship (2.4),
the conditions (2.5), (2.6), (2.7), (2.10) and (2.11) with α, δ 6= 1 and the positivity of
the temperatures (2.14), then we have the following entropy inequality

∂t

(∫
f1 ln f1dv +

∫
f2 ln f2dv

)
+∇x ·

(∫
vf1 ln f1dv +

∫
vf2 ln f2dv

)
≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean velocity
and temperature. Moreover at equilibrium the interspecies Maxwell distributions M12

and M21 satisfy u12 = u2 = u1 = u21 and T12 = T2 = T1 = T21.

We now explicitly specify the global equilibrium.
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2 A BGK model for mixtures

2.1.8 The structure of the equilibrium

Theorem 2.1.8 (Equilibrium). Assume f1, f2 > 0 and the relationship (2.4), the
conditions (2.5), (2.6), (2.7), (2.10) and (2.11)and the positivity of the temperatures
(2.14). Then Q11(f1, f1) + Q12(f1, f2) = 0 and Q22(f2, f2) + Q21(f2, f1) = 0 if and
only if f1 and f2 are Maxwell distributions with equal mean velocity and temperature.

Proof. If Q11(f1, f1) +Q12(f1, f2) = 0 and Q22(f2, f2) +Q21(f2, f1) = 0, then∫
(ln f1 Q11(f1, f1) + ln f1 Q12(f1, f2) + ln f2 Q22(f2, f2) + ln f2 Q21(f2, f1))dv = 0

and so we have equality in the H-theorem.

2.1.9 Macroscopic equations

In the macroscopic equations in theorem 1.3.3, we did not compute the integrals
on the right-hand side. In the case of Maxwellian molecules, when the collision
kernel B in the Boltzmann equation does not depend on the relative velocity |v − v1|,
it is possible to compute these integrals. This is done in [1]. In general, this is to
complicated or not possible. But, when we use the BGK model as approximations the
integrals in the equations in 1.3.3 are just integrals of Maxwell distributions which
we can easily compute. In this case we can specify the exchange terms of momentum
and energy. This is done in the following theorem.

Theorem 2.1.9 (Macroscopic equations for the BGK equation for mixtures). If
f1, f2 ∈ L∞(R3 × R3 × R+

0 ) decay fast enough to zero in the v variable and are a
solution to (2.2) in the sense of distributions, they satisfy the following local macroscopic
conservation laws.

∂tn1 +∇x · (n1u1) = 0,

∂tn2 +∇x · (n2u2) = 0,

∂t(m1n1u1) +∇x · P1 +∇x · (m1n1u1 ⊗ u1) = fm12 ,

∂t(m2n2u2) +∇x · P2 +∇x · (m2n2u2 ⊗ u2) = fm2,1 ,

∂t

(
m1

2
n1|u1|2 +

3

2
n1T1

)
+∇x ·Q1 = FE1,2

,

∂t

(
m2

2
n2|u2|2 +

3

2
n2T2

)
+∇x ·Q2 = FE2,1 ,

with fm1,2
, fm2,1

, FE1,2
and FE2,1

given by

fm1,2
= −fm2,1

= m1ν12n1n2(1− δ)(u2 − u1),

Fm1,2 = −Fm2,1 = εν21
1

2
n2n1m1

(
(δ2 − 1)|u1|2 + (1− δ)2|u2|2 + 2δ(1− δ)u1 · u2

)
+

3

2
εν21n1n2

(
(1− α)(T2 − T1) + γ|u1 − u2|2

)
.
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Proof. The derivation of the left-hand side of the equations is exactly the same as
in the proof of theorem 1.3.3. But for the BGK operators in (2.2) we can compute
the integrals on the right-hand side. This is done in the proofs of the theorems 2.1.2
and 2.1.3 using the expressions for the mixture velocities (2.6) and (2.7), and the
mixture temperatures (2.10) and (2.11).

Remark 2.1.5. From theorem 2.1.9 we can observe a physical meaning of α and
δ. We see that α and δ show up in the exchange terms of momentum and energy
as a parameter in front of the relaxation of u1 towards u2 and T1 towards T2. So
it determines together with the collision frequencies the speed of relaxation of the
velocities and the temperatures to a common value.

Remark 2.1.6. The exchange terms of energy can be written in the following equiva-
lent form

FE1,2 = −FE2,1

=

[
ν12

1

2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2)) +

1

2
ν12n1n2γ(u1 − u2)

]
· (u1 − u2)

+
3

2
εν21n1n2(1− α)(T2 − T1).

2.2 Correlation to other models in the literature

In this section, we review models that have been previously introduced [1], [49] and
[51]. [49] and [51] can be considered as special cases of the class described here.
Thanks to this, all of them enjoy an H-theorem, conservation properties and positivity
of the interspecies temperatures.

2.2.1 Special cases of this model in the literature

In this section we see that the two well-known models [49] and [51] are special
cases of our model. In particular, this means that we can proof the H-theorem for
these two often used models.

Model of Gross and Krook

In [49], Gross and Krook describe a plasma with two species of particles, species 1
and species 2 .

∂tfk + v · ∇xfk =
nk
σkk

(Mk − fk) +
nk
σkj

(Mkj − fk), k, j = 1, 2, k 6= j.
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2 A BGK model for mixtures

The parameters σkj are collision parameters, the terms nk
σkj

are the collision frequen-
cies from particles of species k with particles of species j. The Maxwell distributions
are given by

Mk =
nk√

2π Tk
mk

3 exp

(
−|v − uk|

2

2 Tk
mk

)
, k = 1, 2,

Mkj =
nk√

2π
Tkj
mk

3 exp

(
−|v − ukj |

2

2
Tkj
mk

)
, k, j = 1, 2, k 6= j,

with the mixed velocities

u12 = au1 + (1− a)u2,

u21 =

(
1 +

m2

m1
a

)
u1 −

m2

m1
au2,

where a ∈ R is an undetermined coefficient, and the mixed temperatures

T21 = bT2 + (1− b)T1 +A|u2|2 +Bu1u2 + C|u1|2,
T12 = bT1 + (1− b)T2 +D|u2|2 + Eu1u2 + F |u1|2.

b ∈ R is an undetermined coefficient. Five out of the six coefficients A,B,C,D,E and
F are determined by the conservation properties, assuming that σ12 = σ21, and the
assumption that for t→∞, u1 and u2 tend to an equal value and T21(∞) = T1(∞),
T12(∞) = T2(∞). The model of Gross and Krook [49] is obtained from our BGK
model by choosing ε = 1, while δ, α and γ are free parameters. In the case of a
plasma they suggest δ = a = m1

m1+m2
. They also assume (2.5) for conservation of

mass. They assume one of the mixture velocities to be a linear combination of u1 and
u2, similar to (2.6) and deduce (2.7) from conservation of momentum. They further
choose T12 of the form

T12 = αT1 + (1− α)T2 +A|u1|2 +B|u2|2 + Cu1u2, α,A,B,C ∈ R,

and deduce with conservation of energy that T21 is given by

T21 = (1− α)T1 + αT2 +D|u1|2 + E|u2|2 + Fu1u2,

where five of the variables A,B,C,D,E ∈ R are determined in order to get conser-
vation of energy. From the present work the constants must be chosen in order to
satisfy (2.14). In this case the model satisfies the H-theorem.
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2.2 Correlation to other models in the literature

Model of Hamel

In [51], Hamel describes a kinetic model for a gas mixture where the two species
interact via a molecular force Fkj = mkmjpkj

1
r5 for k, j = 1, 2 where the parameters

pkj ∈ R describe the strength of the interaction. The model is given by

∂tfk + vk · ∇xfk = nkκkk

(
nk√

2πTk/mk
3 exp

(
−mk|vk − uk|2

2Tk

)
− fk

)

+ njκkj

(
nkj√

2πTkj/mk
3 exp

(
−mk|vk − ukj |2

2Tkj

)
− fk

)
,

for k, j = 1, 2, k 6= j, where the functions κkj , ukj and Tkj are given by

κkj =2.66(pij(mi +mj))
1
2 for k, j = 1, 2, k 6= j,

κkk =2.906(pkkmk)
1
2 for k = 1, 2,

uij =ui +
mj

mi +mj
(uj − ui),

Tij =Ti + 2
mimj

(mi +mj)2
(Tj − Ti) + 2

mimj

(mi +mj)2
|ui − uj |2

mj

3

=
m2
i +m2

j

(mi +mj)2
Ti +

2mimj

(mi +mj)2
Tj + 2

mimj

(mi +mj)2
|ui − uj |2

mj

3
for k, j = 1, 2, k 6= j.

Hamel’s model [51] is obtained from our BGK model (2.2) by choosing ε = 1,
δ = m1

m1+m2
, α =

m2
1+m2

2

(m1+m2)2 and γ = m1m2

(m1+m2)2
m2

3 . The parameters are chosen in
order to reproduce the fluxes of momentum and energy of Maxwellian molecules. His
model also takes into account the physical considerations described in remark 2.1.3.
The model satisfies condition (2.5) for conservation of mass. u12 and u21 satisfy
condition (2.6) respectively (2.7) with this chosen δ and ε, so we have conservation
of total momentum. T12 and T21 are of the form (2.10) and (2.11), respectively, so
we have conservation of energy. The requirements for positivity of the temperature
are satisfied, since

1 ≥ α =
m2

1 +m2
2

(m1 +m2)2
≥ 0,

and conditions (2.14) and (2.15) then reduce to m1 ≥ 0 and m2 ≥ 0, so Hamel’s
model has positive temperatures and an H-theorem.

2.2.2 Comparison with the model of Andries, Aoki and Perthame

The next model also describes a gas mixture of Maxwellian molecules, but it contains
only one term on the right-hand side [1].

∂tf1 + v · ∇xf1 = (ν11n1 + ν12n2)(M (1) − f1),

∂tf2 + v · ∇xf2 = (ν22n2 + ν21n1)(M (2) − f2).
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2 A BGK model for mixtures

The Maxwell distributions are given by

M (k) =
nk√

2π T
(k)

mk

3 exp

(
−mk|v − u(k)|2

2T (k)

)
, k = 1, 2,

with the interspecies velocities

u(1) = u1 + 2
m2

m1 +m2

χ12

ν11n1 + ν12n2
n2(u2 − u1),

u(2) = u2 + 2
m1

m1 +m2

χ21

ν22n2 + ν21n1
n1(u1 − u2),

and the interspecies temperatures

T (1) = T1 −
m1

3
|u(1) − u1|2

+
2

3

m1m2

(m1 +m2)2

4χ12

ν11n1 + ν12n2
n2

(
3

2
(T2 − T1) +m2

|u2 − u1|2

2

)
,

T (2) = T2 −
m2

3
|u(2) − u2|2

+
2

3

m1m2

(m1 +m2)2

4χ21

ν22n2 + ν21n1
n1

(
3

2
(T1 − T2) +m1

|u1 − u2|2

2

)
,

where χ12, χ21, ν12 and ν21 are parameters which are related to the differential cross
section. For the detailed expressions see [1].

For χ12 = χ21, the model also satisfies the conservation properties and the
H-theorem with equality if and only if the distribution functions are Maxwell distri-
butions with equal mean velocity and temperature.

Remark 2.2.1. The exchange of momentum of the species 1 in this model is given by

m1(ν11n1 + ν12n2)

∫
v(M (1) − f1)dv = 2

m2m1

m2 +m1
χ12n1n2(u2 − u1).

The exchange of the energy of species 1 is given by∫
m1

2
|v|2(ν11n1 + ν12n2)(M (1) − f1)dv

= n1n2
2m2m1χ12

(m1 +m2)

(
− m1

m1 +m2
|u1|2 +

m2

m1 +m2
|u2|2

+
m1 −m2

m1 +m2
u1u2 +

2

m1 +m2

3

2
(T2 − T1)

)
.
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2.2 Correlation to other models in the literature

So the model discussed here reproduces the same momentum and energy fluxes
between the species (2.8), (2.9), (2.12) and (2.13) choosing the parameters δ, α and
γ as:

δ = −2
m2

m1 +m2

χ12

ν12
+ 1,

α = −4
m1m2

(m1 +m2)2

χ12

ν12
+ 1,

γ =
4

3

m1m
2
2

(m1 +m2)2

χ12

ν12

(
1− χ12

ν12

)
.

For χ12 ≤ ν12 the parameter γ is non-negative.

The model of Andries, Aoki and Perthame has another property, proposition 3.2 in
[1], which the models described above do not have. It is called the indifferentiability
principle. It denotes the following property:

Remark 2.2.2 (Indifferentiability principle). When the masses m1 and m2 and the
collision frequencies ν11, ν12, ν21 and ν22 are identical, the total distribution function
f = f1 + f2 obeys a single species BGK equation.

See also [21] for another model which also has the indifferentiability principle.
The model in this chapter does not satisfy the indifferentiability principle. The
indifferentiability principle in our model holds only in the global equilibrium. On
physical grounds it is reasonable to assume that two species of identical particles
become really indifferentiable when they have the same macroscopic speeds and
temperatures.
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Chapter 3

Determination of an unknown function in
a macroscopic model of Dellacherie
This chapter will show the usefulness of our kinetic description in a macroscopic
model by Dellacherie [32]. We want to use the model described in chapter 2 in
order to determine an unknown function in the energy exchange in the macroscopic
model of Dellacherie [32]. In section 3.1 we introduce the macroscopic model of
Dellacherie and compare the moment equations of our kinetic model in section 3.2
with the model of Dellacherie in order to determine his unknown function in the
energy exchange. This idea is also presented by Klingenberg and Pirner in [58].

3.1 Macroscopic model of Dellacherie

We consider the macroscopic model for a two component gas mixture from the
literature [32]. Each gas consisting of particles of the mass mk is characterized by
a density nk, a mean velocity uk and an energy Ek, k = 1, 2. Dellacherie in [32]
proposes a macroscopic model for gas mixtures given by

∂t



m1n1

m2n2

m1n1u1

m2n2u2

m1n1E1

m2n2E2


+∇x·



m1n1u1

m2n2u2

m1n1u1 ⊗ u1 + p11
m2n2u2 ⊗ u2 + p21
u1(m1n1E1 + p1)
u2(m2n2E2 + p2)


=



0
0

λu(u2 − u1)
λu(u1 − u2)

λT (T2 − T1) + λuU(u1, u2) · (u2 − u1)
λT (T1 − T2) + λuU(u1, u2) · (u1 − u2)


,

(3.1)

where U(u1, u2) is an unknown function of the velocities u1, u2 and λu, λT are
relaxation parameters determined by physical experiments. The temperature Tk and
the pressure pk are related by the equation of an ideal gas given by pk = nkTk. The
unknown function U is inside the relaxation term in the energy equations. Dellacherie
[32] has the following restriction on U in the one dimensional case. He can show
that his macroscopic model for gas mixtures satisfies an H-theorem as soon as U
verifies the condition

min(u1, u2) ≤ U(u1, u2) ≤ max(u1, u2). (3.2)

With this restriction on U in (3.2) Dellacherie is able to prove that for λu, λT → 0
the model converges formally to a macroscopic model for the densities, the total
momentum and the total energy. For details of the proof see [32].
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3 Determination of an unknown function in a macroscopic model of Dellacherie

3.2 Comparison of the energy exchanges

Now, our aim is to derive a macroscopic equation for the energy from the kinetic BGK
model (2.2) with zero forces and to determine the parameter γ in the definition of
the mixture temperature T12 in (2.10).

Lemma 3.2.1. Assume (2.4), the conditions (2.5), (2.6) and (2.10). Then the momen-
tum and energy exchange term of species 1 of the model (2.2) are given by

Fm1,2
= m1ν12n1n2(1− δ)(u2 − u1), (3.3)

FE1,2 =
[1

2
m1ν12n1n2(δ − 1)(u1 + u2 + δ(u1 − u2))

+
3

2
ν12n1n2γ(u1 − u2)

]
· (u1 − u2) +

3

2
ν12n1n2(1− α)(T1 − T2).

(3.4)

The momentum and energy exchange terms of species 1 are obtained by multiply-
ing the right-hand side of the first equation of (2.2) by v and |v|2, respectively and
integrating the result with respect to v, for more details see the proof of theorem
2.1.9 and remark 2.1.6. We will get the following relationship between the energy
exchange of the two models (2.2) and (3.1).

Theorem 3.2.2. Assume δ < 1. The two energy exchange terms (3.4) and the one in
(3.1) coincide if U is of the form

U(u1, u2) =
1

2

(u1 + u2) · (u1 − u2)

|u1 − u2|2
(u1 − u2) + c(u1 − u2) + V⊥(u1, u2), c ∈ R,

where V⊥ is a function orthogonal to u1 − u2.

Proof. In order to have equality with the exchange term from Dellacherie, we want
that

F velE1,2
:=
[1

2
m1ν12n1n2(δ − 1)(u1 + u2 + δ(u1 − u2)) +

3

2
ν12n1n2γ(u1 − u2)

]
· (u1 − u2)

!
= −λuU(u1, u2) · (u1 − u2),

which is equivalent to[1

2
m1ν12n1n2(δ − 1)(u1 + u2 + δ(u1 − u2)) +

3

2
ν12n1n2γ(u1 − u2) + λuU(u1, u2)

]
·(u1 − u2) = 0.

(3.5)

This means that[1

2
m1ν12n1n2(δ − 1)(u1 + u2 + δ(u1 − u2)) +

3

2
ν12n1n2γ(u1 − u2) + λuU(u1, u2)

]
,

has to be orthogonal to u1 − u2.
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3.2 Comparison of the energy exchanges

We split all terms in a term parallel and a term orthogonal to u1 − u2:

U(u1, u2) = v(u1, u2)(u1 − u2) + V⊥(u1, u2),

u1 + u2 =

[
(u1 + u2) · (u1 − u2)

|u1 − u2|

]
u1 − u2

|u1 − u2|
+ u⊥(u1, u2).

Now the fact that the whole expression has to be orthogonal to u1 − u2 means that
the sum of coefficients in front of u1 − u2 in (3.5) has to vanish. This leads to[

1

2
m1ν12n1n2(δ − 1)

(
(u1 + u2) · (u1 − u2)

|u1 − u2|2
+ δ

)
+

3

2
ν12n1n2γ + λuv(u1, u2)

]
= 0.

(3.6)

In order to get equality in the exchange terms of momentum (3.1) and (3.3), we
have to choose

δ = 1− λu
m1ν12n1n2

. (3.7)

If we use this expression for δ given by (3.7) and solve (3.6) for γ, we obtain

γ =
1

3
m1(1− δ) (u1 + u2) · (u1 − u2)

|u1 − u2|2
+

1

3
m1(1− δ)δ − 2

3
λuv(u1, u2)

1

n1n2ν12

=
1

3
m1(1− δ) (u1 + u2) · (u1 − u2)

|u1 − u2|2
+

1

3
m1(1− δ)δ − 2

3
m1(1− δ)v(u1, u2).

(3.8)

Since we assumed γ to be a parameter independent of the velocities, we deduce

v(u1, u2) =
1

2

(u1 + u2) · (u1 − u2)

|u1 − u2|2
− c, c ∈ R,

for δ < 1.

For γ, this leads to

γ =
1

3
m1(1− δ)δ +

2

3
m1(1− δ)c. (3.9)

We also get a restriction on U like Dellacherie.

Lemma 3.2.3 (Restriction on the constant c). If we assume that all temperatures are
positive, we get the following restriction on the constant c given by

−1

2
δ ≤ c ≤ −1

2

(
m1

m2
ε(1− δ)

)
+

1

2
. (3.10)

Proof. In order to have positive temperatures in the two species BGK model, we need
that γ satisfies the condition (2.14).
We see from (3.7) that δ ≤ 1, since λu,m1, ν12, n1, n2 are assumed to be positive.
This leads to the restriction on the constant c given by (3.10).
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3 Determination of an unknown function in a macroscopic model of Dellacherie

γ is a non-negative number, so the right-hand side of the inequality in (2.14)
must be non-negative. This condition is equivalent to (2.15). With this restriction on
δ we can deduce from (3.10) the estimate

−1

2
≤ c ≤ 1

2
.

This corresponds to the estimate (3.2) on U in the one-dimensional case from [32].
With (3.10) we have a more restrictive estimate on the function U and with (3.8) an
explicit expression of the parallel part of U . The orthogonal part does not matter
because it does not enter in the exchange term.

3.3 Determine the constant c by symmetry arguments

In the kinetic model in chapter 2 the mixture temperature T12 of species 1 is given
by (2.10) and the one of species 2 by (2.11). Due to symmetry arguments we
choose the term in front of |u1 − u2|2 in the temperature T21 such that it is equal to
εγ = 1

3εm1(1− δ)δ+ ε 2
3m1(1− δ)c using γ given by (3.9). Comparing the coefficient

in front of |u1 − u2|2 with this expression for εγ leads to a value for the constant c
given by

c =
1

4
(1− δ)

(
1− m1

m2
ε

)
.

It remains to show that this specific c satisfies the estimates (3.10). First, the estimate
from below. If we use (2.15) we obtain

c = −1

4

(
m1

m2
ε− 1

)
(1− δ) ≥ −1

4
δ

(
1 +

m1

m2
ε

)
(1− δ).

We rearrange (2.15) to

1− δ ≤ 2

1 + m1

m2
ε
. (3.11)

This leads to
c ≥ −1

2
δ.

The estimate on this specific c from above is equivalent to

1

4

m1

m2
ε(1− δ) +

1

4
(1− δ) ≤ 1

2
.

By using (3.11) we get

1

4

(
m1

m2
ε+ 1

)
(1− δ) ≤ 1

4

2

1− δ
(1− δ) =

1

2
.

In summary we are able to determine more accurately the energy exchange in a
model by Dellacherie.

54



Chapter 4

Existence, uniqueness and positivity of
solutions for BGK models for mixtures

In chapter 2, we developed a model which we want to use in applications. Therefore,
we are interested in the fact if there exists a solution. If yes, is the solution unique
and in which function space lives the solution. Furthermore, the equations describe a
time evolution of distribution functions. Therefore, we want to ensure that in our
model the distribution functions remain positive in time if we start with positive
initial data. We want to prove these properties in this chapter. Moreover, it turns out
that the strategy of proving these properties can easily be applied to the model of
Andries, Aoki and Perthame in [1] presented in section 2.2.2. So in this chapter, our
aim is to prove existence, uniqueness and positivity of solutions to the BGK model
for mixtures developed in chapter 2 and the model of Andries, Aoki and Perthame
in [1]. This chapter is largely motivated by the paper of Perthame and Pulvirenti
[70] where the global existence of mild solutions of the BGK equation for one species
was established, and [87] where global existence of mild solutions of the ES-BGK
model for one species is shown. The ES-BGK model is an extension of the BGK model
and is described later in chapter 7. There is also a result concerning the Boltzmann
equation for mixtures in a similar fashion in [50]. These properties in this chapter
are also presented in [58] by Klingenberg and Pirner.

The outline of the chapter is as follows: In section 4.1 we want to introduce the
notion of solutions which we will consider in this chapter. In section 4.2.1 we repeat
the BGK model for two species developed in chapter 2, and in section 4.2.2 we repeat
the model of Andries, Aoki and Perthame such that it is possible to read this chapter
independently of the others and add further assumptions in order to prove existence
and uniqueness. In section 4.3.1, we prove bounds on the macroscopic quantities
which we need in order to show existence and uniqueness of non-negative solutions
in section 4.3.2. In section 4.4 we will deduce that all classical solutions with positive
initial data remain positive for all later times.

4.1 Notion of solutions

In this section we want to present the notion of solutions we will consider in this
chapter and compare it with other notions used in the literature. In this section we
want to illustrate the notion of solutions with the help of the single inhomogeneous
transport equation. The aim of introducing mild solutions is to allow solutions with a
lower regularity than in the classical sense.
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

4.1.1 Motivation of mild solutions

We now consider the problem

∂tf
inhom + v · ∇xf inhom + d f inhom = F in R3 × R3 × (0, T ), (4.1)

where d : R3 × [0, T ] → R3 and F : R3 × R3 × [0, T ] × R → R are given integrable
functions, d = d(x, t), F = F(x, v, t, f inhom(x, v, t)), and f inhom : R3×R3×R+ → R
is the unknown, f inhom = f inhom(x, v, t). Here (x, v) ∈ R3 × R3 denotes a point in
the position-velocity space called phase space and t ≥ 0 denotes the time.

First we assume that F is independent of f inhom and d = 0. We require an
initial condition given by f inhom(x, v, 0) = f inhom,0(x, v). Assume it exists a classical
solution to (4.1). Then we can find the explicit expression of the solution with the
following method also described in Evans [40]. We fix (x, v, t) ∈ R3 × R3 × R+

and consider the function z(s) := f inhom(x+ sv, v, t+ s) for s ∈ R+. Note that the
arguments of f inhom in the definition of z coincide with the characteristic curves of
the homogeneous transport equation computed in example 1.1.1 in section 1.1. In
this case we obtain for the derivative of z with respect to s

d

ds
z(s) = ∂tf

inhom(x+ sv, v, t+ s) + v · ∇xf inhom(x+ sv, v, t+ s)

= F(x+ sv, v, t+ s).
(4.2)

Consequently

f inhom(x, v, t)− f inhom,0(x− tv, v) = z(0)− z(−t) =

∫ 0

−t

d

ds
z(s)ds

=

∫ 0

−t
F(x+ sv, v, t+ s) =

∫ t

0

F(x+ (s− t)v, v, s)ds.

So we obtain a solution of f inhom given by

f inhom(x, v, t) = f inhom,0(x− tv, v) +

∫ t

0

F(x+ (s− t)v, v, s)ds.

If d(x, t) 6= 0, we can define g(x, v, t) = f inhom(x, v, t)eα(x,v,t) with some differen-
tiable function α(x, v, t) determined later. Then

∂tg(x, v, t) = ∂tf
inhom(x, v, t)eα(x,v,t) + f inhom(x, v, t)eα(x,v,t)∂tα(x, v, t)

= ∂tf
inhom(x, v, t)eα(x,v,t) + g(x, v, t)∂tα(x, v, t),

and

∇xg(x, v, t) = ∇xf inhom(x, v, t)eα(x,v,t) + g(x, v, t)∇xα(x, v, t).

By using (4.1) we get

∂tg(x, v, t) + v · ∇xg(x, v, t)

=
(
−d(x, t)f inhom(x, v, t) + F(x, v, t)

)
eα(x,v,t) + g(x, v, t) (∂tα(x, v, t) + v · ∇xα(x, v, t))

= −d(x, t)g(x, v, t) + F(x, v, t)eα(x,v,t) + g(x, v, t) (∂tα(x, v, t) + v · ∇xα(x, v, t)) .
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4.1 Notion of solutions

Now choose α(x, v, t) such that

∂tα(x, v, t) + v · ∇xα(x, v, t) = d(x, t) and α(x, v, 0) = 0,

so we choose α(x, v, t) as a solution of the inhomogeneous transport equation

α(x, v, t) =

∫ t

0

d(x+ (s− t)v, s)ds.

The initial value of α is chosen such that f inhom and g have the same initial values.
Then g solves

∂tg(x, v, t) + v · ∇xg(x, v, t) = F(x, v, t)eα(x,v,t),

or in integral form

g(x, v, t) = g0(x− tv, v) +

∫ t

0

F(x+ (s− t)v, v, s)eα(x+(s−t)v.v,s)ds,

so

f inhom(x, v, t) = e−α(x,v,t)f inhom,0(x− tv, v, t)

+ e−α(x,v,t)

∫ t

0

F(x+ (s− t)v, v, s)eα(x+(s−t)v,v,s)ds

also for d 6= 0. So we obtained a solution f inhom even for d 6= 0. If in addition F
depends on f inhom, we do not obtain a solution to f inhom with this strategy but an
integral equation for f inhom given by

f inhom(x, v, t) = e−α(x,v,t)f inhom,0(x− vt, v, t)

+ e−α(x,v,t)

∫ t

0

F(x+ (s− t)v, v, s, f inhom(x, v, t))eα(x+(s−t)v,v,s)ds.

(4.3)

This integral equation is equivalent to equation 4.1 for classical solutions and smooth
functions F , f inhom,0 and d. But (4.3) can also have solutions with lower regularity.
We call this solutions mild solutions.

Definition 4.1.1. Let f inhom,0 be measurable, then we call f inhom a mild solution
to (4.1) if and only if

• For almost all x, v we have F(x − vs, v, s, f inhom(x − vs, v, s)), d(x − vs, s) ∈
L1(0, T ).

• For all t ∈ [0, T ) and for almost all x, f inhom satisfies

f inhom(x, v, t) = f inhom,0(x− vt, v, t)

+ e−α(x,v,t)

∫ t

0

F(x+ (s− t)v, v, s, f inhom(x+ (s− t)v, v, t))eα(x+(s−t)v,v,s)ds.
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

4.1.2 Connection to weak solutions

Another commonly used extension to a solution with lower regularity is given by
weak solutions, especially in the study of the macroscopic equations. In this section
we want to compare the notion of mild solutions with weak solutions in the sense of
distributions.

Definition 4.1.2 (Test functions). We define D = D([0, T ]×R3×R3) as the space of
all C∞([0, T ]× R3 × R3) functions with compact support in [0, T )× R3 × R3, where
by saying that the support is compact in [0, T ), we mean that the support can include
0, but must not contain T .

Definition 4.1.3 (Weak solution). By saying that f inhom solves (4.1) in D′ we mean
that for all φ ∈ D we have∫ T

0

∫
R3

∫
R3

f inhom(− ∂tφ− v · ∇xφ+ d φ)dxdvdt−
∫
R3

∫
R3

f inhom,0φ(0, x, v)dxdv

=

∫ T

0

∫
R3

∫
R3

F(x, v, t, f inhom(x, v, t))φdxdvdt.

This makes sense for f inhom ∈ L1 if we have the conditions on the coefficients

d ∈ L1
loc, F ∈ L1

loc.

We call such a solution weak solution or solution in the sense of distributions.

We have the following equivalence between mild and weak solutions.

Theorem 4.1.1. If f inhom ∈ L1
loc(R3×R3×[0, T )) and F ∈ L1

loc(R3×R3×[0, T )×R),
then mild and distributional solutions are equivalent.

Proof. The proof is given in [9] but for F independent of f inhom. We want to show
the proof here but for F dependent of f inhom. Without loss of generality we assume
d = 0. Otherwise we can merge it into F . Let f inhom be a distributional solution in
the sense of definition 4.1.3. Fix a test function φ ∈ D(R3 × R3). Let ρn ∈ D([0, T )),
n ∈ N with ρn(0) = 0 and ρn → 1[t1,t2] in D′([0, T )). The definition of convergence
in the sense of distributions can be found for example in definition 16.2 in volume 2
of [33]. Then we obtain

0=〈∂tf inhom + v · ∇xf inhom −F , φ(x− vt, v)ρn(t)〉
=− 〈f inhom, (∂t + v · ∇x)(φ(x− vt, v)ρn(t))〉 − 〈F , φ(x− vt)ρn(t)〉
=− 〈f inhom, ρn(t)(∂t + v · ∇x)φ(x− vt, v) + φ(x− vt)ρ′n(t)〉 − 〈F , φ(x− vt)ρn(t)〉
=− 〈f inhom(x+ vt, v, t), 0 + φρ′n(t)〉 − 〈F(x+ vt, v, t, f inhom(x+ vt, v, t)), φρn(t)〉.

(4.4)

Here, the notation 〈·〉 is the action of distributions inD′([0, T )×R3×R3). The equality
(∂t+v ·∇x)φ(x−tv, v) = 0 follows from the chain rule applied to the smooth function
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4.1 Notion of solutions

φ. The last equality follows from a change of variables in the integrations. As φ was
arbitrary, we have∫ T

0

(ρn(t)F(x+ vt, v, t, f inhom(x+ vt, v, t)) + ρ′n(t)f inhom(x+ vt, v, t))dt = 0,

(4.5)

for almost all (x, v). We then let n→∞ to obtain that for almost all x

f inhom(x+ vt2, v, t2)− f inhom(x+ vt1, v, t1)

=

∫ t2

t1

F(x+ vs, v, s, f inhom(x+ vs, v, s))ds,
(4.6)

which is equivalent to

f inhom(x, v, t)−f inhom(x−vt, v, 0) =

∫ t

0

F(x+v(s− t), v, s, f inhom(x+v(s− t))ds,

for t = t2 and t1 = 0 and a change in the notation x+ vt to x. The converse comes
from reversing this argument. We start with equation (4.6). We take an arbitrary test
function φ ∈ D(R3 × R3). We obtain∫
R3

∫
R3

f inhom(x+ vt2, v, t2)φ(x, v)dxdy =

∫
R3

∫
R3

f inhom(x+ vt1, v, t1)φ(x, v)dxdv

+

∫ t2

t1

∫
R3

∫
R3

F(x+ vs, v, s, f inhom(x+ vs, v, s))φ(x, v)dxdvds.

Take any ψ ∈ D([0, T )) and fix t1 = 0, t2 = τ . Multiply the obtained equation by
ψ′(τ) and integrate with respect to τ .

〈f inhom(x+ vτ, v, τ)φ(x, v)ψ′(τ)〉 −
∫ ∫

F(x, v, 0, f inhom(x, v, t))φ(x, v)ψ(0)dxdv

=

∫ T

0

∫ τ

0

∫
R3

∫
R3

F(x+ vs, v, s, f inhom(x+ vs, v, s))φ(x, v)ψ′(τ)dxdvdsdτ

=

∫ T

0

∫ T

s

∫
R3

∫
R3

F(x+ vs, v, s, f inhom(x+ vs, v, s))φ(x, v)ψ′(τ)dxdvdsdτ

=

∫ T

0

∫
R3

∫
R3

F(x+ vs, v, s, f inhom(x+ vs, v, s))φ(x, v)

∫ T

s

ψ′(τ)dτdxdvds

= −
∫ T

0

∫
R3

∫
R3

F(x+ vs, v, s, f inhom(x+ vs, v, s))φ(x, v)ψ(s)dxdvds

= −〈F(x+ vs, v, s, f inhom(x+ vs, v, s))φ(x, v)ψ(s)〉.

So we obtain by changing the notation of the variable s into τ in the last integral

〈f inhom(x+ vτ, v, τ)φ(x, v)ψ′(τ)〉 −
∫ ∫

F(x, v, 0, f inhom(x, v, t))φ(x, v)ψ(0)dxdv

= −〈F(x+ vτ, v, τ, f inhom(x+ vτ, v, τ))φ(x, v)ψ(τ)〉.
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

The corresponds to the last line in (4.4) equal to zero for arbitrary test functions plus
a term with additional initial values since the general test function has not be have
zero initial data and can be transformed to the first line first line of (4.4) with the
same calculation done in (4.4) but in the reversed direction. All in all, we obtain that
f inhom is a weak solution according to the definition 4.1.3.

Remark 4.1.1. This theorem can be easily extended to a system of two equations

∂tf
inhom
k + v · ∇xf inhomk + dk f

inhom
k = Fk in R3 × R3 × (0, T ), k = 1, 2,

where dk : R3 × [0, T ] → R3 and Fk : R3 × R3 × [0, T ] × R × R → R are given
functions, dk = dk(x, t), Fk = Fk(x, v, t, f inhom1 (x, v, t), f inhom2 (x, v, t)), and f inhomk :
R3 × R3 × R+ → R are the unknown, f inhomk = f inhomk (x, v, t), k = 1, 2. In the next
sections we will see that the BGK model for gas mixtures presented in chapter 2
satisfies the requirements of theorem 4.1.1. Therefore the existence and uniqueness
of mild solutions of the model proposed in chapter 2 is equivalent to the existence
and uniqueness of weak solutions.

4.2 BGK models for mixtures

In this section we will repeat the two types of BGK models for gas mixtures, the one
from chapter 2 developed by Klingenberg, Pirner and Puppo and the one in [1] by
Andries, Aoki and Perthame such that this chapter can be read independently of the
other chapters.

4.2.1 BGK approximation for mixtures with two collision terms

We will repeat the definitions which are needed to follow this chapter such that it is
possible to read this chapter independently. Since we consider a mixture composed of
two different species, our kinetic model has two distribution functions f1(x, v, t) > 0
and f2(x, v, t) > 0 where x ∈ RN and v ∈ RN , N ∈ N are the phase space variables
and t ≥ 0 the time. Note, that the proof of existence, uniqueness and positivity is
independent of the dimension. So we replace the dimension 3 from the previous
chapters by the variable dimension N .

Furthermore, for any f1, f2 : Λ× RN × R+
0 → R, Λ ⊂ RN with (1 + |v|2)f1, (1 +

|v|2)f2 ∈ L1(dv), f1, f2 ≥ 0 we relate the distribution functions to macroscopic
quantities by mean-values of fk, k = 1, 2

∫
fk(v)

 1
v

mk|v − uk|2

 dv =:

 nk
nkuk
NnkTk

 , k = 1, 2, (4.7)

where nk is the number density, uk the mean velocity and Tk the mean temperature
of species k, k = 1, 2. Note that we shall write Tk instead of kBTk, where kB is
Boltzmann’s constant.

60



4.2 BGK models for mixtures

We consider the model presented in chapter 2 given by

∂tf1 +∇x · (vf1) = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂tf2 +∇x · (vf2) = ν22n2(M2 − f2) + ν21n1(M21 − f2),

f1(t = 0) = f0
1 ,

f2(t = 0) = f0
2 ,

(4.8)

with the Maxwell distributions

Mk(x, v, t) =
nk√

2π Tk
mk

N
exp(−|v − uk|

2

2 Tk
mk

), k = 1, 2,

M12(x, v, t) =
n12√

2π T12

m1

N
exp(−|v − u12|2

2T12

m1

),

M21(x, v, t) =
n21√

2π T21

m2

N
exp(−|v − u21|2

2T21

m2

).

(4.9)

Within the next page the unknown variables will be explained. ν11n1 and ν22n2

are the collision frequencies of the particles of each species with itself, while ν12n2 and
ν21n1 are related to interspecies collisions. To be flexible in choosing the relationship
between the collision frequencies, we now assume the relationship

ν12 = εν21, 0 < ε ≤ 1. (4.10)

The restriction on ε is without loss of generality. If ε > 1, exchange the notation 1
and 2 and choose 1

ε . In addition, we assume that all collision frequencies are positive.
For the existence and uniqueness proof we assume the following restrictions on our
collision frequencies

νjk(x, t)nk(x, t) = ν̃jk
nk(x, t)

n1(x, t) + n2(x, t)
, j, k = 1, 2, (4.11)

with constants ν̃11, ν̃12, ν̃21, ν̃22 > 0. This means that the collision frequencies are
given by a constant times the relative density. This makes also sense from the physical
point of view. The collision frequencies are related to the speed of relaxation to
equilibrium. The speed of the different types of relaxations due to different types
of interactions depends on the proportion of the densities compared to the total
densities and not from the total values of the densities.

The Maxwell distributions M1 and M2 in (4.9) have the same moments as f1 and
f2, respectively. With this choice, we guarantee the conservation of mass, momentum
and energy in interactions of one species with itself (see section 2.1.5). The remaining
parameters n12, n21, u12, u21, T12 and T21 will be determined using conservation of
the number of particles, of total momentum and total energy, together with some
symmetry considerations. If we assume that

n12 = n1 and n21 = n2, (4.12)
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

we have conservation of the number of particles, see theorem 2.1.1. If we further
assume that u12 is a linear combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R, (4.13)

then we have conservation of total momentum provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1), (4.14)

see theorem 2.1.2. If we further assume that T12 is of the following form

T12 = αT1 + (1− α)T2 + γ|u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0, (4.15)

then we have conservation of total energy provided that

T21 =

[
1

N
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1− α)T1 + (1− ε(1− α))T2,

(4.16)

see theorem 2.1.3. In order to ensure the positivity of all temperatures, we need to
restrict δ and γ to

0 ≤ γ ≤ m1

N
(1− δ)

[
(1 +

m1

m2
ε)δ + 1− m1

m2
ε

]
, (4.17)

and
m1

m2
ε− 1

1 + m1

m2
ε
≤ δ ≤ 1, (4.18)

see theorem 2.1.4 in chapter 2 for N = 3.

In the following, we want to study mild solutions of (4.8).

Definition 4.2.1. We call (f1, f2) with (1+|v|2)fk ∈ L1(dv), f1, f2 ≥ 0 a mild solution
to (4.8) under the conditions of the collision frequencies (4.11) if and only if f1, f2

satisfy
fk(x, v, t) = e−αk(x,v,t)f0

k (x− tv, v)

+ e−αk(x,v,t)

∫ t

0
[ν̃kk

nk(x+ (s− t)v, s)
nk(x+ (s− t)v, s) + nj(x+ (s− t)v, s)

Mk(x+ (s− t)v, v, s)

+ ν̃kj
nj(x+ (s− t)v, s)

nk(x+ (s− t)v, s) + nj(x+ (s− t)v, s)
Mkj(x+ (s− t)v, v, s)]eαk(x+(s−t)v,v,s)ds,

where αk is given by

αk(x, v, t) =

∫ t

0

[ν̃kk
nk(x+ (s− t)v, s)

nk(x+ (s− t)v, s) + nj(x+ (s− t)v, s)

+ν̃kj
nj(x+ (s− t)v, s)

nk(x+ (s− t)v, s) + nj(x+ (s− t)v, s) ]ds,

for k, j = 1, 2, k 6= j.

By construction, a classical solution is always a mild solution. But in order to also
allow solutions with a lower regularity, in the following, we want to study existence,
uniqueness and positivity of mild solutions.
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4.3 Existence and uniqueness of mild solutions for the two species BGK model

4.2.2 BGK approximation for mixtures with one collision term

The next model describes a gas mixture of Maxwellian molecules, but it contains only
one term on the right-hand side [1].

∂tf1 + v · ∇xf1 = (ν11n1 + ν12n2)(M (1) − f1),

∂tf2 + v · ∇xf2 = (ν22n1 + ν21n1)(M (2) − f2).

The Maxwell distributions are given by

M (k) =
nk√

2π T
(k)

mk

3 exp

(
−mk|v − u(k)|2

2T (k)

)
, k = 1, 2,

with the interspecies velocities

u(k) = uk + 2
mj

mk +mj

χkj
νkknk + νkjnj

nj(uk − uj), k, j = 1, 2, k 6= j,

and the interspecies temperatures

T (k) = Tk −
mk

3
|u(k) − uk|2

+
2

3

mkmj

(mk +mj)2

4χkj
νkknk + νkjnj

nj

(
3

2
(Tk − Tj) +mk

|uj − uk|2

2

)
,

for k, j = 1, 2, k 6= j,

(4.19)

where χ12, χ21, ν12 and ν21 are parameters which are related to the differential cross
section. For the detailed expressions see [1]. We still assume for the existence proof
that the collision frequencies have the shape given in (4.11).

Definition 4.2.2. We call (f1, f2) with (1+|v|2)fk ∈ L1(dv), f1, f2 ≥ 0 a mild solution
to (8.2) under the conditions of the collision frequencies (4.11) if and only if f1, f2

satisfy
fk(x, v, t) = e−αk(x,v,t)f0

k (x− tv, v)

+ e−αk(x,v,t)

∫ t

0
[ν̃kk

nk(x+ (s− t)v, s)
nk(x+ (s− t)v, s) + nj(x+ (s− t)v, s)

+ ν̃kj
nj(x+ (s− t)v, s)

nk(x+ (s− t)v, s) + nj(x+ (s− t)v, s)
]M(k)(x+ (s− t)v, v, s)]eαk(x+(s−t)v,v,s)ds,

where αk is given given as in definition 4.2.1, k, j = 1, 2, k 6= j.

4.3 Existence and uniqueness of mild solutions for the two
species BGK model

In section 4.3.1, we start considering several estimates on the macroscopic quantities
which we will use in section 4.3.2 for the existence and uniqueness of mild solutions.
This will be done for the model described in section 4.2.1. The proof for the model
presented in section 4.2.2 is very similar. So we just illustrate this in remarks.
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

4.3.1 Estimates on the macroscopic quantities

First, we present some estimates on macroscopic quantities which we need later for
the existence and uniqueness proof.

Theorem 4.3.1. For any pair of functions (f1, f2) with (1+|v|2)fk ∈ L1(dv), f1, f2 ≥ 0,
we define the moments and macroscopic parameters as in (4.7), (4.13), (4.14), (4.15)
and (4.16) and set

Nq(fk) = sup
v
|v|qfk(v), q ≥ 0, k = 1, 2. (4.20)

Then the following estimates hold

(i.1) nk
T
N/2
k

≤ CN0(fk) for k = 1, 2,

(i.2) n1

T
N/2
12

≤ CN0(f1),

(i.3) n2

T
N/2
21

≤ CN0(f2).

Proof. The proof of (i.1) is exactly the same as the proof of the inequality (2.2) in
[70]. We want to repeat it here for the convenience of the reader. We consider
nk =

∫
fk(v)dv for k = 1, 2. We split the integration with respect to the velocity v

into |uk − v| > Rk and |uk − v| ≤ Rk for some Rk determined later. Then in the first
integral we have 1 < |uk−v|2

R2
k

and obtain

nk ≤
1

R2
k

∫
|uk−v|>Rk

|v − uk|2fk(v)dv +

∫
|uk−v|≤Rk

fk(v)dv.

The first integral is linked to the temperature Tk defined by (4.7) and the second
integral can be estimated by the supremum of fk. So

nk ≤
nkNTk
mkR2

k

+ CRNk N0(fk).

Now we choose Rk as Rk =
(
nkTk
N0(fk)

) 1
N+2

and obtain

nk ≤ C(nkNTk)
N
N+2 (N0(fk))

2
N+2 ,

which is equivalent to condition (i.1).
We deduce the estimate (i.2) and (i.3) from (i.1). Furthermore, since we assumed
that f1, f2 ≥ 0,γ ≥ 0, 0 ≤ α ≤ 1, ε ≤ 1 and condition (4.17) both the temperatures
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4.3 Existence and uniqueness of mild solutions for the two species BGK model

T1 and T2 and all coefficients in T12 and T21 are positive. All in all, with (i.1) this
leads to the estimates

n1

T
N/2
12

=
n1

(αT1 + (1− α)T2 + γ|u1 − u2|2)N/2
≤

n1

αN/2T
N/2
1

≤ CN0(f1),

n2

T
N/2
21

=
n2(

ε(1− α)T1 + (1− ε(1− α))T2 +
[

1
N εm1(1− δ)

(
m1
m2

ε(δ − 1) + δ + 1
)
− εγ

]
|u1 − u2|2

)N/2
≤

n2

(1− ε(1− α))N/2T
N/2
2

≤ CN0(f2).

Remark 4.3.1. Similar estimates as (i.2) and (i.3) can also be obtained for T (1), T (2)

from (4.19) in the model presented in section 4.2.2 in an analogously way if the
coefficient in front of |u1 − u2|2 in (4.19) is non-negative meaning χ12n2

ν11n1+ν12n2
≤ 1

and χ21n1

ν22n2+ν21n1
≤ 1. This is reasonable in order to ensure the positivity of the

temperatures T (1) and T (2).

Theorem 4.3.2. For any pair of functions (f1, f2) with (1+|v|2)fk ∈ L1(dv), f1, f2 ≥ 0,
we define the moments as in (4.7), (4.13), (4.14), (4.15) and (4.16), then we have

(ii.1) nk(Tk + |uk|2)
q−N

2 ≤ CqNq(fk) for q > N + 2, k = 1, 2,

(ii.2) n1(T12 + |u12|2)
q−N

2 ≤ Cq(Nq(f1) + n1

n2
Nq(f2)) for q > N + 2,

(ii.3) n2(T21 + |u21|2)
q−N

2 ≤ Cq(n2

n1
Nq(f1) +Nq(f2)) for q > N + 2.

Proof. The proof of (ii.1) is exactly the same as the proof of the inequality (2.3) in
[70]. We want to repeat it here for the convenience of the reader. We consider
nk(NTk + |uk|2) =

∫
|v|2fk(v)dv for k = 1, 2. We split the integration with respect to

the velocity v into |v| > Rk and |v| ≤ Rk for some Rk determined later. We obtain

nk(NTk + |uk|2) ≤
∫
|v|>Rk

|v|q

|v|q−2
fk(v)dv +

∫
|v|≤Rk

|v|2fk(v)dv.

Since q > N + 2, we can estimate the integral
∫
|v|>Rk

1
|v|q−2 dv from above by

CqR
N−q+2
k . In the second integral we use that |v|2 ≤ R2

k. Then we get

nk(NTk + |uk|2) ≤ CRN−q+2
k Nq(fk) + nkR

2
k.

Now we choose Rk as Rk =
(

nk
Nq(fk)

) 1
N−q

and obtain

nk(NTk + |uk|2) ≤ C(nk)1− 2
q−N (Nq(fk))

2
q−N .

Since fk ≥ 0, we have nk(Tk + |uk|2) ≤ nk(NTk + |uk|2) and we can deduce the
required inequality (ii.1).
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

In order to prove (ii.2), estimate n1(T12 + |u12|2) using that fk ≥ 0, (4.13) and (4.15)
by

n1(T12 + |u12|2) ≤ n1(NT12 + |u12|2)

= n1(αNT1 + (1− α)NT2 +Nγ|u1 − u2|2 + |δu1 + (1− δ)u2|2)

= n1(αNT1 + (1− α)NT2 + (δ2 +Nγ)|u1|2 + ((1− δ)2 +Nγ)|u2|2

+ 2(δ(1− δ)−Nγ)u1 · u2.

Using that |u1 + u2|2 ≥ 0 and |u1 − u2|2 ≥ 0, we can estimate the term (δ(1− δ)−
Nγ)u1 · u2 from above by |δ(1− δ)−Nγ| 12 (|u1|2 + |u2|2) and obtain

n1(T12 + |u12|2) ≤ n1[αNT1 + (δ2 +Nγ + |δ(1− δ)−Nγ|)|u1|2 + (1− α)NT2

+ ((1− δ)2 +Nγ + |δ(1− δ)−Nγ|)|u2|2

≤ n1[max{α, δ2 +Nγ + |δ(1− δ)−Nγ|}(NT1 + |u1|2)]

+ max{1− α, ((1− δ)2 +Nγ + |δ(1− δ)−Nγ|)}(NT2 + |u2|2)].

Set A1 := max{α, δ2 +Nγ + |δ(1− δ)−Nγ|} and A2 := max{1−α, (1− δ)2 +Nγ +
|δ(1− δ)−Nγ|}. Then

n1(T12 + |u12|2) ≤ n1[A1(NT1 + |u1|2) +A2(NT2 + |u2|2)]

= A1

∫
|v|2f1(v)dv +A2

n1

n2

∫
|v|2f2(v)dv.

We split the integration with respect to the velocity v into |v| > R12 and |v| ≤ R12 for
some R12 determined later. We obtain

n1(T12 + |u12|2) ≤
∫
|v|>R12

|v|q

|v|q−2

(
A1f1(v) +A2

n1

n2
f2(v)

)
dv

+

∫
|v|≤R12

|v|2
(
A1f1(v) +A2

n1

n2
f2(v)

)
dv.

Again, since q > N + 2, we can estimate the integral
∫
|v|>R12

1
|v|q−2 dv from above by

CqR
N−q+2
12 . In the second integral we use that |v|2 ≤ R2

12. Then we get

n1(T12 + |u12|2) ≤ CRN−q+2
12 (A1Nq(f1) +A2

n1

n2
Nq(f2)) + Cn1R

2
12.

Now we choose R12 =

(
n1

A1Nq(f1)+A2
n1
n2
Nq(f2)

) 1
N−q

and obtain

n1(T12 + |u12|2) ≤ Cn1− 2
q−N

1 (A1Nq(f1) +
n1

n2
A2Nq(f2))

2
q−N ,

which is equivalent to the required estimate (ii.2). The proof of (ii.3) is similar to the
proof of (ii.2).
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4.3 Existence and uniqueness of mild solutions for the two species BGK model

Lemma 4.3.3. For any pair of functions (f1, f2) with (1 + |v|2)fk ∈ L1(dv), f1, f2 ≥ 0,
we define the moments as in (4.7), (4.13), (4.14), (4.15) and (4.16). Let q ∈ N or
q − 1

2 ∈ N, then there exists a constant A > 0 such that

|δu1 + (1− δ)u2|q ≤ A|u1|q +A|u2|q,

(αT1 + (1− α)T2 + γ|u1 − u2|2)q ≤ A(T q1 + T q2 + |u1 − u2|2q).

Proof. We prove the statement per induction with respect to q. We just prove the
first inequality, the proof of the second one is similar to the first one. For q = 1 the
statement is true, since it is the triangle inequality. Assume now that it is true for a
fixed q ∈ N. Then we get for q + 1

|δu1 + (1− δ)u2|q+1 = |δu1 + (1− δ)u2|q|δu1 + (1− δ)u2|.

With the assumption that the statement is true for this fixed q and for q = 1, we
obtain

|δu1 + (1− δ)u2|q+1 ≤ (A|u1|q +A|u2|q)(Ã|u1|+ Ã|u2|)
= AÃ|u1|q+1 +AÃ|u2|q+1 +AÃ|u1|q|u2|+AÃ|u2|q|u1|,

for some constants A, Ã > 0. The requirement that there exists a constant Â such
that this expression is less or equal to

Â|u1|q+1 + Â|u2|q+1

is equivalent to

(AÃ− Â)|u1|q+1 + (AÃ− Â)|u2|q+1 +AÃ|u1|q|u2|+AÃ|u2|q|u1| ≤ 0.

Choose Â = 2AÃ. Then the inequality is equivalent to

−AÃ|u1|q+1 −AÃ|u2|q+1 +AÃ|u1|q|u2|+AÃ|u2|q|u1| ≤ 0,

which is equivalent to

AÂ(|u1|q − |u2|q)(|u2| − |u1|) ≤ 0,

which is a true statement since q > 1.
The proof for q with q − 1

2 ∈ N is similar with induction starting with q = 1
2 . For

q = 1
2 it is right, since it is the triangle inequality for the Euclidean norm.

Theorem 4.3.4. For any pair of functions (f1, f2) with (1+|v|2)fk ∈ L1(dv), f1, f2 ≥ 0,
we define the moments as in (4.7), (4.13), (4.14), (4.15) and (4.16), then we have

(iii.1) nk|uk|N+q

[(Tk+|uk|2)Tk]N/2
≤ CqNq(fk) for any q > 1, k = 1, 2,
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(iii.2) n1|u12|q

T
N/2
12

≤ n1C( |u1|q
(T1)N/2

+ |u2|q
(T2)N/2

) for any q > 1,

(iii.3) n2|u21|q

T
N/2
21

≤ n2C( |u1|q
(T1)N/2

+ |u2|q
(T2)N/2

) for any q > 1.

Proof. The proof of (iii.1) is exactly the same as the proof of the inequality (2.3) in
[70]. For the convenience of the reader we want to repeat it here. For q > 1, we get
by Hölder’s inequality from appendix A.1 that

nk|uk| ≤
∫
|v|fk(v)dv ≤

∫
|uk−v|≤Rk

nk
nk
|v|fk(v)dv +

∫
|uk−v|>Rk

|v|fk(v)dv

≤ nk

(∫
|uk−v|≤Rk

|v|q fk(v)

nk
dv

) 1
q

+
1

Rk

∫
|uk − v||v|fk(v)dv

≤ Cn1− 1
q

k Nq(fk)1/qR
N/q
k +

1

Rk

(∫
|v|2fk(v)dv

)1/2(∫
|uk − v|2fk(v)dv

)1/2

≤ C
(
n
q−1
q

k Nq(fk)
1
qR

N/q
k +

nk
Rk

(
NTk + |uk|2

)1/2
T

1/2
k

)
.

Now if we choose Rk =

(
n

1/q
k (NTk+|uk|2)1/2T 1/2

Nq(fk)1/q

) q
N+q

, we obtain the inequality

nk|uk| ≤ Cn
1
q (q−1+ 1

N+q )

k Nq(fk)
1
q (1− N

N+q )((NT + |u|2)
1
2T

1
2 )

N
N+q ,

which is equivalent to the required estimate (iii.1).
Estimate (iii.2) is a consequence of lemma 4.3.3 using that γ ≥ 0, 0 ≤ α ≤ 1 and
condition (4.17), since we have

n1|u12|q

T
N/2
12

=
n1|δu1 + (1− δ)u2|q

(αT1 + (1− α)T2 + γ|u1 − u2|2)N/2
≤ n1

A(|u1|q + |u2|q)
(αT1 + (1− α)T2)N/2

≤ n1
A|u1|q

(αT1)N/2
+ n1

A|u2|q

((1− α)T2)N/2
.

The proof of (iii.3) is similar to the proof of (iii.2).

Consequence 4.3.5. For any pair of functions (f1, f2) with (1 + |v|2)fk ∈ L1(dv),
f1, f2 ≥ 0, we define the moments as in (4.7), (4.13), (4.14), (4.15) and (4.16),
then we have

(iv.1) supv |v|qMk[fk] ≤ CqNq(fk) for q > N + 2 or q = 0,

(iv.2) supv |v|qM12[f1, f2] ≤ Cq(Nq(f1) + n1

n2
Nq(f2)) for q > N + 2 or q = 0,

(iv.3) supv |v|qM21[f1, f2] ≤ Cq(n2

n1
Nq(f1) +Nq(f2)) for q > N + 2 or q = 0.
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Note that here and in the following we write Mk[fk],M12[f1, f2] and M21[f1, f2]
instead of Mk,M12 and M21 in order to emphasize the dependence of the Maxwell
distributions on the distribution functions f1 and f2 via the macroscopic quantities as
densities, velocities and temperatures.

Proof. The proof of (iv.1) is exactly the same as the proof of the inequality (2.3) in
[70]. For the convenience of the reader we want to repeat it here. First, we consider
the case q > N + 2. According to lemma 4.3.3, we obtain

sup
v
|v|qMk[fk] ≤ C sup

v
(|v − uk|q + |uk|q)Mk[fk]

= C sup
v

(|v − uk|q + |uk|q)
nk

(2πTk)N/2
e
− |v−uk|

2

2Tk/mk .

By computing derivatives of |v − uk|qMk[fk] with respect to v, we see that the

maximum of |v − uk|qMk[fk] is given by nkT
q−N

2

k . The computation is done in more
details in the proof of estimate (iv.2), so we will omit the details here. We obtain

sup
v
|v|qMk[fk] ≤ C(nkT

q−N
2

k + nk
|uk|q

T
N/2
k

).

Define Ek := C(nkT
q−N

2

k + nk
|uk|q

T
N/2
k

). Now we consider two cases, if |uk| > T
1/2
k and

|uk| ≤ T 1/2
k . First |uk| > T

1/2
k . In this case

Ek ≤ Cnk
|uk|q

T
N/2
k

= Cnk
|uk|q+N

|uk|NTN/2k

= Cnk
|uk|q+N

( 1
2 |uk|2 + 1

2 |uk|2)N/2T
N/2
k

≤ Cnk
|uk|q+N

(|uk|2 + Tk)N/2T
N/2
k

.

Finally the estimate (iii.1) leads to

Ek ≤ CqNq[fk].

When |uk| ≤ T 1/2
k , we obtain with (ii.1)

Ek ≤ CnkT
q−N

2

k ≤ CqNq[fk].

So all in all, we obtain

sup
v
|v|qMk[fk] ≤ CqNq[fk] for q > N + 2.

For q = 0 we obtain with (i.1)

sup
v
Mk[fk] ≤ nkT−N/2k ≤ CN0(fk).
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Now, the proof of (iv.2). First for q > N + 2. First we compute the maximum of
M12[f1, f2] and |v − u12|M12[f1, f2] similar to the case of one species. The maximum
of the Maxwell distribution M12[f1, f2] in v is reached when v = u12. Therefore

max
v

M12[f1, f2] =
n1

(2π T12

m1
)N/2

.

For the maximum of |v − u12|qM12[f1, f2], we compute the gradient in v and obtain
by using the product rule

∇v(|v−u12|qM12[f1, f2]) = (v−u12)q|v−u12|q−2M12[f1, f2]−
m1

T12
|v−u12|q(v−u12)M12[f1, f2].

The condition that this expression is equal to zero is equivalent to

(q(v − u12)− m1

T12
|v − u12|(v − u12)) = 0

for v 6= u12. We can exclude v = u12 since it is a minimum. From this expression, we
can deduce

|v − u12|2 =
T12

m1
q.

If we insert this into |v − u12|qM12[f1, f2], we obtain

max
v

(|v − u12|qM12[f1, f2]) = max
v

((
T12

m1
q)

q
2

n1

(2π T12

m1
)N/2

e−q).

For |v| → ∞, the expression |v − u12|qM12[f1, f2] tends to zero, so it is equal to the
supremum. All in all, we obtain

sup
v
|v|qM12[f1, f2] ≤ sup

v
|v − u12|qM12[f1, f2] + sup

v
|u12|qM12[f1, f2]

≤ C

(
n1T

q−N
2

12 + n1
|u12|q

T
N/2
12

)
= C

(
n1(αT1 + (1− α)T2 + γ|u1 − u2|2) + n1

|u12|q

T
N/2
12

)
.

Since q −N > 0, we can use lemma 4.3.3 in the first term twice and (iii.2) in the
second term on the right-hand side and obtain

sup
v
|v|qM12[f1, f2]

≤ C

(
n1(T1 + |u1|2)

q−N
2 + n1

|u1|q

T
N/2
1

+
n1

n2
n2

(
(T2 + |u2|2)

q−N
2 +

|u2|q

T
N/2
2

))
.

The first and the third term on the right-hand side can be estimated using (ii.1) and
the other two terms can be estimated in the same way as in the proof of (iv.1) for
one species by CNq(f1) and C n1

n2
Nq(f2), respectively. Combining both, we get

sup
v
|v|qM12[f1, f2] ≤ Cq(Nq(f1) +

n1

n2
Nq(f2)).
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For q = 0 we use

sup
v
M12[f1, f2] ≤ n1

T
N/2
12

≤ n1

T
N/2
1

≤ CN0(f1),

using (i.1). The proof of (iv.3) is similar to the proof of (iv.2).

Remark 4.3.2. For the multi-species model of Andries, Aoki and Perthame in section
4.2.2 we can obtain the same estimates
(i.2*/ i.3*) nk

(T (k))
N
2

≤ CN0(fk), k = 1, 2,

(ii.2*/ii.3*) nk(T (k) + |u(k)|2)
q−N

2 ≤ Cq(Nq(fj) +
nj
nk
Nq(fk)) for q > N + 2, j 6= k,

(iii.2*/iii3*) nk|u(k)|q

(T (k))
N
2

≤ nkC
(
|u1|2

T
N/2
1

+ |u2|2

T
N/2
2

)
,

(iv.2*/iv.3*) supv |v|qM (k)[f1, f2] ≤ Cq( njnkNq(fk) +Nq(fj))

for q > N + 2 or q = 0, j 6= k,

analogously to the estimates (i.2/i.3)/(ii.2/ii.3)/(iii.2/iii.3)/(iv.2/iv.3), since
u(1), u(2) are also linear combinations of u1 and u2 and T (1), T (2) are also combina-
tions of T1, T2, |u1 − u2|2.

4.3.2 Existence and uniqueness proof

In this section we want to show existence and uniqueness of non-negative solutions in
a certain function space using the estimates of the previous section. For the existence
and uniqueness proof, we make the following assumptions:

Assumptions 4.3.1.

1. We assume periodic boundary conditions. Equivalently we can construct solu-
tions satisfying

fk(t, x1, ..., xN , v1, ..., vN ) = fk(t, x1, ..., xi−1, xi + ai, xi+1, ...xN , v1, ...vN ),

for all i = 1, ..., N and a suitable {ai} ∈ RN with positive components, for
k = 1, 2.

2. We require that the initial values f0
k , k = 1, 2 satisfy assumption 1.

3. We are on the bounded domain in space Λ = {x ∈ RN |xi ∈ (0, ai)}.

4. Suppose that f0
k satisfies f0

k ≥ 0, (1 + |v|2)f0
k ∈ L1(Λ× RN ) with∫

f0
kdxdv = 1, k = 1, 2.

5. Suppose Nq(f0
k ) := supv f

0
k (x, v)(1 + |v|q) = 1

2A0 <∞ for some q > N + 2.

6. Suppose γk(x, t) :=
∫
f0
k (x− vt, v)dv ≥ C0 > 0 for all t ∈ R.

7. Assume that the collision frequencies are written as in (4.11) and are positive.
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

With this assumptions we can show the following theorem.

Theorem 4.3.6. Under the assumptions 4.3.1 and the definitions (4.7), (4.13), (4.14),
(4.15) and (4.16), there exists a unique non-negative mild solution
(f1, f2) ∈ C(R+;L1((1 + |v|2)dvdx)) of the initial value problem (4.8). Moreover, for
all t > 0 the following bounds hold:

|uk(t)|, |u12(t)|, |u21(t)|, Tk(t), T12(t), T21(t), Nq(fk)(t) ≤ A(t) <∞,
nk(t) ≥ C0e

−t > 0,

Tk(t), T12(t), T21(t) ≥ B(t) > 0,

for k = 1, 2 and some constants A(t), B(t).

Proof. The idea of the proof is to find a Cauchy sequence of functions in a certain
space which converges towards a solution to (4.8). The sequence will be constructed
in a way such that each member of the sequence satisfies an inhomogeneous transport
equation. In this case we know results of existence and uniqueness. In order to
show that this sequence is a Cauchy sequence we need to show that the Maxwell
distributions on the right-hand side of (4.8) are Lipschitz continuous with respect to
f1, f2.
The proof is structured as follows: First we proof some estimates on the macroscopic
quantities (4.7), (4.13), (4.14), (4.15) and (4.16). From this we can deduce Lip-
schitz continuity of the Maxwell distributions M1,M2,M12,M21 with respect to f1

and f2 which finally leads to the convergence of this Cauchy sequence to a solution
to (4.8).

Step 1: Gronwall estimate on Nq(fk(t)) given by (4.20)

If f1 is a mild solution according to definition 4.2.1, we have

Nq(f1) = sup
v
|v|qf1 ≤ e−α1(x,v,t) sup

v
|v|qf0

1 (x− tv, v)

+ sup
v
|v|q [e−α1(x,v,t)

∫ t

0
[ν̃11

n1(x+ (s− t)v, s)
n1(x+ (s− t)v, s) + n2(x+ (s− t)v, s)

M1(x+ (s− t)v, v, s)

+ ν̃12
n2(x+ (s− t)v, s)

n1(x+ (s− t)v, s) + n2(x+ (s− t)v, s)
M12(x+ (s− t)v, v, s)]eα1(x+(s−t)v,v,s)ds].

Since α1 is non-negative, we can estimate e−α1(x,v,t) in front of the initial data from
above by 1. Since we assumed that the collision frequencies have the shape given in
(4.11), we can estimate the integrand in the exponential function
e−α1(x,v,t)eα1(x+(s−t)v,v,s) by a constant and obtain

Nq(f1) = sup
v
|v|qf1 ≤ sup

v
|v|qf0

1 (x− tv, v)

+ sup
v
|v|q [

∫ t

0
e−C(t−s)[C

n1(x+ (s− t)v, s)
n1(x+ (s− t)v, s) + n2(x+ (s− t)v, s)

M1(x+ (s− t)v, v, s)

+ C
n2(x+ (s− t)v, s)

n1(x+ (s− t)v, s) + n2(x+ (s− t)v, s)
M12(x+ (s− t)v, v, s)]ds].
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Using assumption 5 (in the assumption 4.3.1) and the fact that we can estimate
e−C(t−s) from above by 1 since s is between 0 and t, we get

Nq(f1) = sup
v
|v|qf1 ≤

1

2
A0 +

∫ t

0

C sup
x

[
n1(x, s)

n1(x, s) + n2(x, s)
sup
v
|v|qM1(x, v, s)

+
n2(x, s)

n1(x, s) + n2(x, s)
sup
v
|v|qM12(x, v, s)]ds.

With (iv.1) and (iv.2), we obtain
Nq(f1) = sup

x,v
|v|qf1

≤
1

2
A0 +

∫ t

0
Cq sup

x
[
n1(x, s) + n2(x, t)

n1(x, s) + n1(x, s)
Nq(f1)(s) +

n1(x, s)

n1(x, s) + n2(x, s)
Nq(f2(s))]ds

≤
1

2
A0 +

∫ t

0
Cq [sup

x
Nq(f1)(s) + sup

x
Nq(f2)(s)]ds.

Similarly, we can estimate Nq(f2) by

Nq(f2) = sup
v
|v|qf2 ≤

1

2
A0 +

∫ t

0

Cq[sup
x
Nq(f1)(s) + sup

x
Nq(f2)(s)]ds.

We add both inequalities and obtain

Nq(f1) +Nq(f2) ≤ A0 +

∫ t

0

Cq[sup
x
Nq(f1)(s) + sup

x
Nq(f2)(s)]ds.

With Gronwall’s lemma, we obtain

Nq(f1)(t) +Nq(f2)(t) ≤ A0e
Cqt for q > N + 2 or q = 0. (4.21)

Step 2: Estimate on the densities

If fk ≥ 0 is a solution, it satisfies

∂tfk + v · ∇xfk = ν̃kk
nk

nk + nj
(Mk − fk) + ν̃kj

nj
nk + nj

(Mkj − fk)

≥ −(ν̃kk + ν̃kj)fk.

If we write this in the mild formulation, this leads to

fk(x, v, t) ≥ e−(ν̃kk+ν̃kj)tf0
k (x− tv).

Integrating this with respect to v leads with assumption 6 (in assumptions 4.3.1) to
the estimate of the densities

nk(x, t) ≥ e−(ν̃kk+ν̃kj)t

∫
f0
k (x− vt, v)dv

≥ e−(ν̃kk+ν̃kj)tγk(x, t) ≥ e−(ν̃kk+ν̃kj)tC0 > 0.

(4.22)
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Step 3: Estimate on the temperatures

Now, we estimate the temperatures from below. First, we consider TN/2k . We can
estimate it from below using (i.1)

T
N/2
k (t) ≥ Cnk(t)

N0(fk(t))
.

Using (4.21) and (4.22), we obtain

T
N/2
k (t) ≥ Ce−(ν̃kk+ν̃kj)tC0

AeCqt
=: B(t) > 0.

We obtain the same estimate for TN/212 using (i.2), (4.21) and (4.22), and for TN/221

using (i.3), (4.21) and (4.22).

Step 4: Estimates on the velocities

We estimate Tk + |uk|2, T12 + |u12|2, and T21 + |u21|2 first using (ii.1), (ii.2) and
(ii.3), respectively and then using (4.21) and (4.22). For example

T12 + |u12|2 ≤
Cq(Nq(f1) + n1

n2
Nq(f2))

2
q−N

n
2/(q−N)
1

≤ CqAe
Cq

2
q−N t

e−C
2

q−N tC
2

q−N
0

< A(t) <∞.

Step 5: Lipschitz continuity

The next step of the proof is to show Lipschitz continuity of the operators fk 7→Mk[fk],
(f1, f2) 7→ n2

n1+n2
M12[f1, f2] and (f1, f2) 7→ n1

n1+n2
M21[f1, f2], when (f1, f2) are re-

stricted to

Ω={(f1,f2)∈L1(Λ×RN ;(1+|v|2)dvdx)|fk≥0,Nq(fk)<A,min(nk,Tk)>C,k=1,2}. (4.23)

The proof for fk 7→Mk[fk] is given in [70]. So it remains to show Lipschitz continuity
for (f1, f2) 7→ n2

n1+n2
M12[f1, f2] and for (f1, f2) 7→ n1

n1+n2
M21[f1, f2]. We only prove

the first case since the second one is similar to the first one. For any pair (f i1, f
i
2), i =

1, 2 in the subset Ω, define (ni1, u
i
12, T

i
12) as their corresponding moments. Set

(nΘ
1 , n

Θ
2 , u

Θ
12, T

Θ
12) = Θ(n1

1, n
1
2, u

1
12, T

1
12) + (1−Θ)(n2

1, n
2
2, u

2
12, T

2
12),

and

M12(Θ) =
nΘ

1

(2πTΘ
12/m1)N/2

e
− |v−u

Θ
12|

2

2TΘ
12/m1

nΘ
2

nΘ
1 + nΘ

2

.

Then we have∫ ∣∣ n1
2

n1
1 + n1

2

M12[f1
1 , f

1
2 ]− n2

2

n2
1 + n2

2

M12[f2
1 , f

2
2 ]
∣∣(1 + |v|2)dv

=

∫ ∣∣M12(1)−M12(0)
∣∣(1 + |v|2)dv.
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Now, we use the Taylor formula with first derivative as remainder and the chain rule
and obtain

∫ ∣∣ n1
2

n1
1 + n1

2

M12[f1
1 , f

1
2 ]− n2

2

n2
1 + n2

2

M12[f2
1 , f

2
2 ]
∣∣(1 + |v|2)dv =

∫ ∣∣∂M12

∂Θ
(Θ)
∣∣(1 + |v|2)dv

≤
∫ 1

0

∫
(
∣∣∂M12

∂nΘ
1

(Θ)
∂nΘ

1

∂Θ

∣∣+
∣∣∂M12

∂uΘ
12

(Θ)
∂uΘ

12

∂Θ

∣∣+
∣∣∂M12

∂TΘ
12

(Θ)
∂TΘ

12

∂Θ

∣∣
+
∣∣∂M12

∂nΘ
2

(Θ)
∂nΘ

2

∂Θ

∣∣)(1 + |v|2)dvdΘ

=

∫ 1

0

∫
(
∣∣∂M12

∂nΘ
1

(Θ)
∣∣|n1

1 − n2
1|+

∣∣∂M12

∂uΘ
12

(Θ)
∣∣|u1

12 − u2
12|

+
∣∣∂M12

∂TΘ
12

(Θ)
∣∣|T 1

12 − T 2
12|+

∣∣∂M12

∂nΘ
2

(Θ)
∣∣|n1

2 − n2
2|)(1 + |v|2)dvdΘ.

An explicit calculation of the derivatives leads to

∫ ∣∣ n1
2

n1
1 + n1

2

M12[f1
1 , f

1
2 ]− n2

2

n1
1 + n2

2

M12[f2
1 , f

2
2 ]
∣∣(1 + |v|2)dv

≤
∫ 1

0

((1 + |uΘ
12|2 +NTΘ

12)|n1
1 − n2

1|+ C[
nΘ

2

nΘ
1 + nΘ

2

nΘ
1

(TΘ
12)1/2

(1 + |uΘ
12|2 + TΘ

12)]|u1
12 − u2

12|

+ C[
nΘ

2

nΘ
1 + nΘ

2

nΘ
1

TΘ
12

(1 + |uΘ
12|2 + TΘ

12)]|T 1
12 − T 2

12|+ (1 + |uΘ
12|2 +NTΘ

12)|n1
2 − n2

2|)dΘ.

The main difference to the one species case is the additional term |∂M12

∂n2
(Θ)| and

the term ∂nΘ
1

(
nΘ

1 n
Θ
2

nΘ
1 +nΘ

2
). For the second term we compute ∂nΘ

1
(
nΘ

1 n
Θ
2

nΘ
1 +nΘ

2
) =

nΘ
2

nΘ
1 +nΘ

2
−

nΘ
1 n

Θ
2

(nΘ
1 +nΘ

2 )2 which we can estimate from above by nΘ
2

nΘ
1 +nΘ

2
≤ 1. All terms in front of

the norms | · | are bounded by a constant due to the estimate on the temperature
T
N/2
12 and the estimate on T12 + |u12|2 proven in step 2 and 3. Furthermore, we can

estimate

|n1
1 − n2

1| ≤
∫

(1 + |v|2)|f1
1 − f2

1 |dv,

and

|n1
2 − n2

2| ≤
∫

(1 + |v|2)|f1
2 − f2

2 |dv,

U :=
nΘ

1 n
Θ
2

nΘ
1 + nΘ

2

|u1
12 − u2

12| =
nΘ

1 n
Θ
2

nΘ
1 + nΘ

2

|αu1
1 + (1− α)u1

2 − αu2
1 − (1− α)u2

2|

≤ nΘ
2 (n1

1 + n2
1)

nΘ
1 + nΘ

2

α|u1
1 − u2

1|+
nΘ

1 (n1
2 + n2

2)

nΘ
1 + nΘ

2

(1− α)|u1
2 − u2

2|.
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

Since nΘ
2

nΘ
1 +nΘ

2
and nΘ

1

nΘ
1 +nΘ

2
are smaller or equal 1, we can estimate

U ≤ (n1
1 + n2

1)α|u1
1 − u2

1|+ (n1
2 + n2

2)(1− α)|u1
2 − u2

2|

≤ α|n1
1u

1
1 − n1

1u
2
1 + n2

1u
1
1 − n2

1u
2
1|+ (1− α)|n1

2u
1
2 − n1

2u
2
2 + n2

2u
1
2 − n2

2u
2
2|

≤ α|n1
1u

1
1 − n1

1u
2
1|+ α|n2

1u
1
1 − n2

1u
2
1|+ (1− α)|n1

2u
1
2 − n1

2u
2
2|+ (1− α)|n2

2u
1
2 − n2

2u
2
2|

≤ α|n1
1u

1
1 − n2

1u
2
1 + n2

1u
2
1 − n1

1u
2
1|+ α|n1

1u
1
1 − n2

1u
2
1 + n2

1u
1
1 − n1

1u
1
1|

+ (1− α)|n1
2u

1
2 − n2

2u
2
2 + n2

2u
2
2 − n1

2u
2
2|+ (1− α)|n1

2u
1
2 − n2

2u
2
2 + n2

2u
1
2 − n1

2u
1
2|

≤ α[|n1
1u

1
1 − n2

1u
2
1|+ |u2

1||n2
1 − n1

1|+ |n1
1u

1
1 − n2

1u
2
1|+ |u1

1||n2
1 − n1

1|]

+ (1− α)[|n1
2u

1
2 − n2

2u
2
2|+ |u2

2||n2
2 − n1

2|+ |n1
2u

1
2 − n2

2u
2
2|+ |u1

2||n2
2 − n1

2|].

Due to the previous estimates on the velocities in step 4, the velocities are bounded
and therefore

U ≤ C[

∫
(1 + |v|2)|f1

1 − f2
1 |dv +

∫
(1 + |v|2)|f1

2 − f2
2 |dv].

In an analogous way, we can estimate

nΘ
1 n

Θ
2

nΘ
1 + nΘ

2

|T 1
12 − T 2

12| ≤ C[

∫
(1 + |v|2)|f1

1 − f2
1 |dv +

∫
(1 + |v|2)|f1

2 − f2
2 |dv].

This all combines to the desired Lipschitz estimate.

Step 6: Existence and Uniqueness of non-negative solutions in Ω̄ (see definition
of Ω in (4.23))

Now, introduce the sequence {(fn1 , fn2 )} of mild solutions to

∂tf
n
1 + v · ∇xfn1 = ν̃11

nn−1
1

nn−1
1 + nn−1

2

(M1[fn−1
1 ]− fn1 )

+ ν̃12
nn−1

2

nn−1
1 + nn−1

2

(M12[fn−1
1 , fn−1

2 ]− fn1 ),

∂tf
n
2 + v · ∇xfn2 = ν̃22

nn−1
2

nn−1
1 + nn−1

2

(M2[fn−1
2 ]− fn2 )

+ ν̃21
nn−1

1

nn−1
1 + nn−1

2

(M21[fn−1
1 , fn−1

2 ]− fn2 ),

f0
1 = f1(t = 0),

f0
2 = f2(t = 0).
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4.3 Existence and uniqueness of mild solutions for the two species BGK model

Since the zeroth functions are known as the initial values, these are inhomogeneous
transport equations for fixed n ∈ N. For an inhomogeneous transport equation we
know the existence of a unique mild solution in the periodic setting

f
n
1 (x, v, t) = e

−αn−1
1 (x,v,t)

f
0
1 (x− tv, v)

+ e
−αn−1

1 (x,v,t)
∫ t

0

[ν̃11
nn−1

1 (x+ (s− t)v, s)
nn−1

1 (x+ (s− t)v, s) + nn−1
2 (x+ (s− t)v, s)

M
n−1
1 (x+ (s− t)v, v, s)

+ ν̃12
nn−1

2 (x+ (s− t)v, s)
nn−1

1 (x+ (s− t)v, s) + nn−1
2 (x+ (s− t)v, s)

M
n−1
12 (x+ (s− t)v, v, s)]eα

n−1
1 (x+(s−t)v,v,s)

ds,

f
n
2 (x, v, t) = e

−αn−1
2 (x,v,t)

f
0
2 (x− tv, v)

+ e
−αn−1

2 (x,v,t)
∫ t

0

[ν̃22
nn−1

2 (x+ (s− t)v, s)
nn−1

1 (x+ (s− t)v, s) + nn−1
2 (x+ (s− t)v, s)

M
n−1
2 (x+ (s− t)v, v, s)

+ ν̃21
nn−1

1 (x+ (s− t)v, s)
nn−1

1 (x+ (s− t)v, s) + nn−1
2 (x+ (s− t)v, s)

M
n−1
21 (x+ (s− t)v, v, s)]eα

n−1
2 (x+(s−t)v,v,s)

ds.

Now, we show that {(fn1 , fn2 )} is a Cauchy sequence in Ω. Then, since Ω̄ is complete,
we can conclude convergence in Ω̄. First, we show that {(fn1 , fn2 )} is in Ω.

• fn1 , fn2 are in L1((1 + |v|2)dvdx) since f0
1 , f

0
2 are in L1((1 + |v|2)dvdx).

• fn1 , fn2 ≥ 0 since f0
1 , f

0
2 ≥ 0.

• Nq(fnk ) < A, min(nnk , T
n
k ) > C, since all estimates in step 1, 2 and 4 are

independent of n.

Now, {(fn1 , fn2 )} is a Cauchy sequence in Ω since we have

||fn1 − f
n−1
1 ||L1((1+|v|2)dvdx)

≤
∫

Λ

∫
Rn
e
−αn−1

1 (x,v,t)
∫ t

0

e
α
n−1
1 (x+(s−t)v,v,s)∣∣ν̃n−1

11

nn−1
1 (x+ (s− t)v, s)

nn−1
1 (x+ (s− t)v, s) + nn−1

2 (x+ (s− t)v, s)

M
n−1
1 (x+ (s− t)v, v, s)− ν̃n−2

11

nn−2
1 (x+ (s− t)v, s)

nn−2
1 (x+ (s− t)v, s) + nn−2

2 (x+ (s− t)v, s)

M
n−2
1 (x+ (s− t)v, v, s)

∣∣ds(1 + |v|2)dxdv

+

∫
Λ

∫
Rn
e
−αn−1

1 (x,v,t)
∫ t

0

e
α
n−1
1 (x+(s−t)v,v,s)∣∣ν̃n−1

12

nn−1
2 (x+ (s− t)v, s)

nn−1
1 (x+ (s− t)v, s) + nn−1

2 (x+ (s− t)v, s)

M
n−1
12 (x+ (s− t)v, v, s)− ν̃n−2

12

nn−2
2 (x+ (s− t)v, s)

nn−2
1 (x+ (s− t)v, s) + nn−2

2 (x+ (s− t)v, s)

M
n−2
12 (x+ (s− t)v, v, s)

∣∣ds(1 + |v|2)dxdv.

Now we use the Lipschitz continuity of the Maxwell distributions

||fn1 − f
n−1
1 ||L1((1+|v|2)dvdx)

≤ C
∫

Λ

∫
Rn
e
−αn−1

1 (x,v,t)
∫ t

0

e
α
n−1
1 (x+(s−t)v,v,s)|fn−1

1 (x+ (s− t)v, v, s)

− fn−2
1 (x+ (s− t)v, v, s)|ds(1 + |v|2)dxdv

+

∫
Λ

∫
Rn
e
−αn−1

1 (x,v,t)
∫ t

0

e
α
n−1
1 (x+(s−t)v,v,s)

[|fn−1
1 (x+ (s− t)v, v, s)− fn−2

1 (x+ (s− t)v, v, s)|

+ |fn−1
2 (x+ (s− t)v, v, s)− fn−2

2 (x+ (s− t)v, v, s)|]ds(1 + |v|2)dxdv

≤ e−Ct
∫ t

0

e
Cs

[||fn−1
1 (s)− fn−2

1 (s)||L1((1+|v|2)dvdx + ||fn−1
2 (s)− fn−2

2 (s)||L1((1+|v|2)dvdx]ds.
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

Similarly, we get for species 2

||fn2 − fn−1
2 ||L1((1+|v|2)dvdx) ≤ e−Ct

∫ t

0

eCs[||fn−1
1 (s)− fn−2

1 (s)||L1((1+|v|2)dvdx)

+||fn−1
2 (s)− fn−2

2 (s)||L1((1+|v|2)dvdx)]ds.

Doing this inductively, we obtain

||fn1 − f
n−1
1 ||L1((1+|v|2)dvdx)

≤ (e−Ct)n
∫ t

0
· · ·
∫ t

0
eCs1 · · · eCsn [||f1

1 (sn)− f0
1 ||L1((1+|v|2)dvdx)

+ ||f1
2 (sn)− f0

2 ||L1((1+|v|2)dvdx)]ds1 · · · dsn

≤
1

Cn
(1− e−Ct)n[ sup

0≤s≤t
||f1

1 (s)− f0
1 ||L1((1+|v|2)dvdx) + sup

0≤s≤t
||f1

2 (s)− f0
2 ||L1((1+|v|2)dvdx)],

with a constant C > 1. So, for species 1, we obtain

sup
0≤t≤T

||fn+m
1 − fn1 ||L1((1+|v|2)dvdx)

≤ sup
0≤t≤T

[||fn+m
1 − fn+m−1

1 ||L1((1+|v|2)dvdx) + · · ·+ ||fn+1
1 − fn1 ||L1((1+|v|2)dvdx)]

≤ sup
0≤t≤T

((
1

C
(1− e−Ct))n+m + · · ·+ (

1

C
(1− e−t))n)[ sup

0≤s≤t
||f1

1 (s)− f0
1 ||L1((1+|v|2)dvdx)

+ sup
0≤s≤t

||f1
2 (s)− f0

2 ||L1((1+|v|2)dvdx)]

≤ ((C(T ))n+m + · · ·+ C(T )n)[ sup
0≤s≤T

||f1
1 (s)− f0

1 ||L1((1+|v|2)dvdx)

+ sup
0≤s≤T

||f1
2 (s)− f0

2 ||L1((1+|v|2)dvdx)]

≤ C(T )n
∞∑
j=1

(C(T ))j [ sup
0≤s≤T

||f1
1 (s)− f0

1 ||L1((1+|v|2)dvdx) + sup
0≤s≤T

||f1
2 (s)− f0

2 ||L1((1+|v|2)dvdx)]

≤
C(T )n

1− C(T )
[ sup
0≤s≤T

||f1
1 (s)− f0

1 ||L1((1+|v|2)dvdx) + sup
0≤s≤T

||f1
2 (s)− f0

2 ||L1((1+|v|2)dvdx)],

which converges to zero as n→∞ since C(T ) = 1−e−CT
C < 1. In order to prove that

the limit is a mild solution to (4.8) and the uniqueness of solutions to (4.8) we use
standard arguments similar as in the proof of the fix point theorem of Banach and
the theorem of Picard-Lindelöf.

Remark 4.3.3. M (1) and M (2) in the model of Andries, Aoki and Perthame in [1]
and section 4.2.2 have the same structure as M12 and M21, respectively, meaning
that the velocities u(1) and u(2) and the temperatures T (1) and T (2) of M (1) and
M (2), respectively have the same structure as the velocities u12 and u21 and the
temperatures T12 and T21. So the proof of theorem 4.3.6 for the model in section
4.2.2 goes through analogously as for the model in section 4.2.1.
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4.4 Positivity of solutions of the BGK approximation for two species

4.4 Positivity of solutions of the BGK approximation for
two species

4.4.1 Idea of the proof

Our aim is to prove that all classical solutions to (4.8) - (4.16) under the assumptions
4.3.1 with positive initial data are positive for all larger times t > 0. The idea of
the proof is as follows. In the previous section, we stated our result about existence
and uniqueness of non-negative solutions.Then, with a Gronwall estimate on the
densities, we deduce that this non-negative solution can be estimated from below
by an exponential function. Considering the solution along characteristics we will
see that when the densities are positive the solution is also positive. With this and
continuity in time, we can conclude that for positive initial data there cannot be a
solution which becomes zero or negative at a time t > 0. So all classical solutions to
(4.8) - (4.16) are positive.

4.4.2 Estimate on the densities

Lemma 4.4.1. If fk ≥ 0 is a mild solution to (4.8) - (4.16) and

γk(x, t) :=

∫
f0
k (x− vt, v)dv ≥ C0 > 0,

for all t ≥ 0, k = 1, 2, then the densities satisfy the estimate

nk(x, t) ≥ C0e
−(ν̃kk+ν̃kj)t,

for all t ≥ 0 where C0 > 0 is a positive constant.

Proof. See step 2 in the proof of theorem 4.3.6.

4.4.3 Positivity of non-negative solutions

Lemma 4.4.2 (Positivity of non-negative solutions). Let (f1, f2) with f1, f2 ≥ 0 be
a mild solution to (4.8)-(4.16) with positive initial data under the assumptions 4.3.1.
Then f1, f2 are even positive, that means f1, f2 > 0 a.e.

Proof. We prove the statement for f1, the proof for f2 is analogously. Let f1 be part
of the non-negative mild solution to (4.8)-(4.16). Then it satisfies by definition

f1(x, v, t) = e−α1(x,v,t)f0
1 (x− tv, v)

+ e−α1(x,v,t)
∫ t

0
[ν̃11

n1(x+(s−t)v,s)
n1(x+(s−t)v,s)+n2(x+(s−t)v,s)M1(x+ (s− t)v, v, s)

+ ν̃12
n2(x+(s−t)v,s)

n1(x+(s−t)v,s)+n2(x+(s−t)v,s)M12(x+ (s− t)v, v, s)]eα1(x+(s−t)v,v,s)ds.

(4.24)
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4 Existence, uniqueness and positivity of solutions for BGK models for mixtures

We assumed that all collision frequencies are positive and according to lemma 4.4.1
all densities are positive. So the right-hand side of (4.24) is positive, therefore

f1(x, v, t) > 0,

for positive initial data. So non-negative solutions to (4.8) - (4.16) are even positive.

4.4.4 Positivity of classical solutions

Theorem 4.4.3. Let (f1, f2) be a classical solution to (4.8) - (4.16) with positive initial
data under the assumptions 4.3.1. Then the solution is positive meaning f1, f2 > 0.

Proof. According to theorem 4.3.6 there exists a non-negative solution to (4.8) -
(4.16) and it is the only non-negative solution to (4.8) - (4.16). So there could
exist another classical solution which at a certain time becomes zero and negative
afterwards. But due to continuity in time, it could only happen if it reaches zero first.
According to lemma 4.4.2 this is not possible, because a non-negative solution always
stays positive. So the unique solution to (4.8) - (4.16) with positive initial data is
positive meaning f1, f2 > 0.
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Chapter 5

Extension to a kinetic model for plasmas
consisting of electrons and ions

In the introduction of chapter 2 we mentioned the advantages of this type of BGK
models for mixtures having a sum of BGK-type interaction terms on the right-hand
side. It is that the two different types of interactions, interactions of a species with
itself and interactions of a species with the other one, are still kept separated. This
allows to model the influence of the contribution to momentum and energy exchanges
and the trend to equilibrium of two species which are very different. One example
of two species which differ in some physical quantities is a gas mixture consisting
of electrons and positively charged ions. In this case, the particles differ in their
charge. Electrons have negative charges, the ions a positive one. Moreover, the mass
of electrons is very small compared to the mass of ions. Both facts influences the
behaviour in a significant way. This is why we want to use the model presented in
chapter 2 as a starting point. However, we have to extend it to charged particles. This
is done in this chapter. Models for electrons and ions are widely used in applications.
One appearance of electrons and ions in applications and in nature is in form of a
plasma. When a gas is brought to a very high temperature (104 K or more), electrons
leave their orbit around the nuclei of the atom to which they belong. This gives
an overall neutral mixture of charged particles, ions and electrons, which is called
plasma. There are a lot of research areas and applications of a plasma. For example
in astrophysics, plasmas play an important role since for example stars are formed
from plasma and gain energy from the process of fusion, which may be a future
possibility to gain energy in applications. The physical principle behind fusion is
to gain energy by removing mass. This is one big research field in physics. It has
the goal of developing fusion as a new energy source. It will be motivated later in
chapter 6.

The outline of this chapter is as follows: In section 5.1 we introduce the basic
physical principles when we deal with charged particles. In section 5.2 we want to
present a model for a two-component mixture of charged particles. In section 5.3, we
conclude with a formal derivation of the equations of ideal magnetohydrodynamics
called MHD equations from the model presented in section 5.2 in order to put the
model presented in section 5.2 in the context of ideal magnetohydrodynamics and
observe how the typical quantities in the kinetic model will show up and influence
the macroscopic equations. This derivation is also presented in [61] by Klingenberg,
Pirner and Puppo.
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5 Extension to a kinetic model for plasmas consisting of electrons and ions

5.1 Physical prerequisites for the following

In this section we want to introduce the basic physical knowledge in order to deal
with charged particles. This is presented in a lot of introductory physics books for
example in [44].

5.1.1 The Maxwell equations

We consider a system with an electric field E0(x) ∈ R3 and a magnetic field B0(x) ∈
R3 at time t = 0. Here x ∈ R3 denotes the position in space. The vector E0 is a
vector in R3 which describes the strength and the orientation of forces on charged
particles due to an electric field. Assume we have a small positive test charge q. Then
E0 is defined as force on this test charge over this charge q. Similarly, the magnetic
field is a measure of the strength and the orientation of forces on charged particles
due to a magnetic field.

The time evolution of the electric field E(x, t) ∈ R3 and the magnetic field
B(x, t) ∈ R3, where t > 0 denotes the time, is given by the Maxwell equations. We
will present them in the following. The first one is called Gauß’s law and describes
the relationship between a static electric field and electric charges ρc(x, t). It is given
by

∇x · E =
1

ε0
ρc, (5.1)

where ε0 denotes a constant called the vacuum permittivity or electric constant. The
meaning of the equation is the following. Electric charges induce an electric field.
Positive charges are sources of an electric field, negative charges are sinks of an
electric field. This can be seen if we integrate (5.1) over a volume in x and use
the theorem of Gauß. Then we see that the electric flux which leaves or enters this
volume is proportional to the charge inside. Especially, if we take a particle with a
small positive charge, the particle would travel from the positive charge towards the
negative charge along the lines determined by the vector field E(x, t).

Physicists suppose that in the case of the magnetic field there are neither sinks
nor sources meaning

∇x ·B = 0. (5.2)

This is called Gauß’s law for magnetism.
We can also get electric and magnetic fields which have no sinks and sources.

In such a field, a particle with a small positive charge would travel along a closed
circle. This is called a rotational field. From physical experiments, we expect that a
rotational field is created by a time varying magnetic field

∇x × E = −∂tB. (5.3)

This is called Faraday’s law. Physicists also observes the reversed process. A time
dependent electric field induces a rotational magnetic field. But a rotational magnetic
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5.2 A kinetic BGK model for ions and electrons

field can also be generated in another way. It can be induced by a charge current
j(x, t) meaning that we have moving charged particles. This is called Ampère’s law.

∇x ×B = µ0j + µ0ε0∂tE. (5.4)

µ0 is the analogous magnetic constant to ε0 and is called vacuum permeability or
magnetic constant.

5.1.2 Lorentz force on charged particles

From physical experiments, we expect that the force FL acting on a particle of electric
charge q with velocity v under the influence of an electric field E and a magnetic
field B is given by

FL = q(E + v ×B).

This force is called Lorentz force and the effect on a charged particle is the following.
We observe that a positively charged particle will be accelerated in the same direction
as the electric field E and will travel on a curve which is orthogonal to the magnetic
field B. A negatively charged particle will be accelerated in the opposite direction.

We observe that the Lorentz force due to an electric or magnetic field changes
the velocity of a particle. If we model the physical system by a distribution function
f(x, v, t), the distribution function will change in time when we have electric or
magnetic fields since the velocity of the particles change. We take this into account
by replacing the left-hand side of the kinetic equation, the transport part,

∂tf + v · ∇xf

by
∂tf + v · ∇xf + FL · ∇vf.

5.2 A kinetic BGK model for ions and electrons

In this section we will present the Vlasov-BGK model for a mixture of two species
and mention its fundamental properties like the conservation properties.

We consider a plasma consisting of electrons denoted by the index e and one
species of ions denoted by the index i. Thus, our kinetic model has two distribution
functions fe(x, v, t) > 0 and fi(x, v, t) > 0 where x ∈ R3 and v ∈ R3 are the phase
space variables and t ≥ 0 is the time.

Furthermore, for any fi, fe : R3 × R3 × R+
0 → R with (1 + |v|2)fi,

(1 + |v|2)fe ∈ L1(dv), fi, fe ≥ 0 we relate the distribution functions to macroscopic
quantities by mean-values of fk, k = i, e

∫
fk(v)

 1
v

mk|v − uk|2

 dv =:

 nk
nkuk
3nkTk

 , k = i, e, (5.5)
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5 Extension to a kinetic model for plasmas consisting of electrons and ions

where mk is the mass, nk the number density, uk the mean velocity and Tk the
temperature of species k, k = i, e. Note that in this chapter we shall write Tk instead
of kBTk, where kB is Boltzmann’s constant.

We want to model the time evolution of the distribution functions by a Vlasov-BGK
equation. The distribution functions are determined by two equations to describe
their time evolution given by

∂tfi + v · ∇xfi +
FLi
mi
· ∇vfi = νiini(Mi − fi) + νiene(Mie − fi),

∂tfe + v · ∇xfe +
FLe
me
· ∇vfe = νeene(Me − fe) + νeini(Mei − fe),

(5.6)

with the mean-field forces FLi and FLe specified later and the Maxwell distributions

Mk(x, v, t) =
nk√

2π Tk
mk

3 exp

(
−|v − uk|

2

2 Tk
mk

)
, k = i, e,

Mkj(x, v, t) =
nk√

2π
Tkj
mk

3 exp

(
−|v − ukj |

2

2
Tkj
mk

)
, k, j = i, e, k 6= j,

(5.7)

where νiini and νeene are the collision frequencies of the particles of each species
with itself, while νiene and νeini are related to interspecies collisions. In the previous
chapters we assumed the general relationship between the collision frequencies

νie = ενei, 0 < ε ≤ 1. (5.8)

In the next section we want to derive a specific value for ε in the case of electrons and
ions. We assume that all collision frequencies are positive. In addition, we take into
account an acceleration due to interactions using the Lorentz forces FLi , F

L
e given by

FLi (x, t) = e (E(x, t) + v ×B(x, t)) and FLe (x, t) = −e (E(x, t) + v ×B(x, t)),

where e denotes the elementary charge. In order to determine the time evolution of
the electric and magnetic field, we couple the system with the Maxwell equations
(5.1), (5.2), (5.3) and (5.4). We assume that there are no external electric and
magnetic fields. The only electric and magnetic field we have is a mean electric and
magnetic field generated by the particles themselves. We therefore assume that the
charge density is given by

ρc = e(ni − ne), (5.9)

and the charge current given by

j = e(niui − neue). (5.10)

We note that the choice of the Maxwell distributions Mi, Me, Mie and Mei is
the same as in the model from chapter 2. The quantities u12, u21, T12 and T21 are

84



5.2 A kinetic BGK model for ions and electrons

still given by the expressions (2.6), (2.7), (2.10) and (2.11). This guarantees that
the mass exchange, the sum of the two momentum exchanges and the sum of the
two energy exchanges are still zero and we still guarantee that all temperatures are
positive under the restrictions

0 ≤ γ ≤ mi(1− δ)
[
(1 +

mi

me
ε)δ + 1− mi

me
ε

]
, (5.11)

and
mi
me
ε− 1

1 + mi
me
ε
≤ δ ≤ 1, (5.12)

see theorems 2.1.1, 2.1.2, 2.1.3 and 2.1.4 in chapter 2.

5.2.1 Relationship between the collision frequencies

The goal of this section is to derive an expression for the ratio of all the relaxation
parameters νii, νie, νee and νei in the case of a plasma, for example a value for ε in
(5.8).

The parameters νie and νei are linked to the interspecies collision frequency. In
plasmas, the mass ratio of the two kinds of particles is me

mi
� 1, where i denotes ions

and e denotes electrons. In this case a common relationship found in the literature
[11] is

νie =
me

mi
νei. (5.13)

A motivation for this relationship in the case of a plasma can be found in [11],
chapter 1.9, which we want to mention here shortly. From physical experiments, we
expect that the collision frequency is proportional to the differential cross section
and the relative velocity. For the typical velocity of ions and electrons close to
equilibrium we take the peak of the Boltzmann distribution called the thermal

velocity vTk =
(

2Tk
mk

) 1
2

, k = i, e and assume that the temperatures are of the same
order, Ti ≈ Te. The cross sections are considered equal, because they depend on the
interaction potential, which in this case is the Coulomb force, that is the same for
both particles. So the only thing which remains to consider is the relative velocity.
Since the mass of the ions mi is much larger than the mass of the electrons me, we
get in the case of νei for the relative velocity of an ion and an electron(

2Te
me

) 1
2

−
(

2Ti
mi

) 1
2

≈ (2Te)
1
2

((
1

me

) 1
2

−
(

1

mi

) 1
2

)

= (2Te)
1
2

1−
(
me
mi

) 1
2

m
1
2
e

≈ (2Te)
1
2

(
1

me

) 1
2

,

which is the order of magnitude of the mean velocity of the electrons. We expect
the relative velocity of two electrons to have the same order of magnitude as the
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5 Extension to a kinetic model for plasmas consisting of electrons and ions

thermal velocity of an electron. Since νee is proportional to the relative velocity of
two electrons and we only want to compare the order of magnitudes of νei and νee,
we conclude that νei and νee are of the same order of magnitude, so we have

νei ≈ νee.

Now consider νii. The ion thermal velocity is lower by an amount of (memi )
1
2 with

respect to the electrons, since(
2Ti
mi

) 1
2

=

(
me

mi

) 1
2
(

2Ti
me

) 1
2

≈
(
me

mi

) 1
2
(

2Te
me

) 1
2

.

Therefore

νii ≈
(
me

mi

) 1
2

νee.

For an estimate of νie and νei we consider a collision of an electron head-on with
an ion. The velocities after a collision of an ion with an electron are given by

v′i = vi −
2me

mi +me
[(vi − ve) · ω]ω,

v′e = ve −
2mi

mi +me
[(ve − vi) · ω]ω,

see corollary 1.2.5. The vector ω was defined as the unit vector along the line with
the minimal distance of the two particles during the interaction, in the direction
of particle 2. Since we consider a head-on collision, ω is parallel to vi−vi

|vi−ve| . So the
formulas for the velocities after the interaction simplify to

v′i = vi −
2me

mi +me
(vi − ve),

v′e = ve −
2mi

mi +me
(ve − vi).

Since me is small compared to mi, we get

v′i = vi +O

(
me

mi

)
,

v′e = ve +O(1),

which reflects the physical fact that collisions of a heavy particle with a light one have
a bigger influence on the lighter one than on the heavy one. Hence νie = me

mi
νee.

To summarize, in the case of ions and electrons, the collision frequencies can be
ordered as follows:

νei ≈ νee ≈
(
mi

me

) 1
2

νii ≈
(
mi

me

)
νie.
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5.2 A kinetic BGK model for ions and electrons

5.2.2 Macroscopic equations

In section 2.1.9 we derived macroscopic equations for the model (2.2) presented in
chapter 2. For the model (5.6) we can also derive macroscopic equations. In this
case we will obtain additional terms due to the additional force terms in (5.6).

Theorem 5.2.1 (Macroscopic equations for the BGK equation for mixtures). If
f1, f2 ∈ L∞(dv) decay fast enough to zero in the v variable and are a solution to
(5.6) in the sense of distributions, they satisfy the following local macroscopic conserva-
tion laws.

∂tni +∇x(niui) = 0,

∂tne +∇x(neue) = 0,

∂t(miniui) +∇x · Pi +∇x · (miniui ⊗ ui)− eni(E + ui ×B) = fmi,e ,

∂t(meneue) +∇x · Pe +∇x · (meneue ⊗ ue) + ene(E + ue ×B) = fme,i ,

∂t

(
mi

2
ni|ui|2 +

3

2
niTi

)
+∇x ·Qi − eEuini = FEi,e ,

∂t

(
me

2
ne|ue|2 +

3

2
neTe

)
+∇x ·Qe + eEuene = FEe,i ,

with the pressure tensor Pk and the energy flux Qk given by

Pk(x, t) =

∫
(v − uk(x, t))⊗ (v − uk(x, t))fk(x, v, t)dv,

Qk(x, t) =
1

2

∫
|v|2vfk(x, v, t)dv,

for k = 1, 2 and with fmi,e , fme,i , FEi,e and FEe,i given by the expressions in theorem
2.1.9 with 1 = i and 2 = e and E,B given by the Maxwell equations (5.1), (5.2), (5.3)
and (5.4) with charge density and charge current given by (5.9) and (5.10).

Proof. We derive only the additional terms due to the force terms in (5.6). The rest
is shown in the proof of theorem 2.1.9. We start with the derivation of conservation
of the number of particles. If we integrate the equation for ions in (5.6) with respect
to v, we get∫

∂tfi(x, v, t)dv +

∫
v · ∇xfidv +

∫
∇v ·

(
e

mi
(E + v ×B)fi

)
dv = 0.

We assume that fi and vfi are decreasing fast enough to zero for |v| → ∞, so with
the Gauß theorem we get, that the third integral on the left-hand side vanishes. So
the equation is equivalent to

∂tni +∇x · (niui) = 0.
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5 Extension to a kinetic model for plasmas consisting of electrons and ions

We can do the same with fe. In this case we get

∂tne +∇x · (neue) = 0.

Multiplying the equation for ions by miv and integrating it with respect to the velocity
v, leads to

mi

∫
v∂tfidv +mi

∫
vv · ∇xfidv +

∫
v∇v · (e(E + v ×B)fi)dv = fmi,e .

In the third term integration by parts with the assumption that vfi is decreasing fast
enough to zero for |v| → ∞ such that we have no contribution from the boundary
terms leads to

−
∫
e(E + v ×B)fidv,

which becomes

−eni(E + ui ×B).

So all in all, we get

∂t(miniui) +∇x · Pi +∇x · (miniui ⊗ ui)− eni(E + ui ×B) = fmi,e .

We can do the same with fe.
Multiplying the equation for the ions by mi

2 |v|
2 and integrating it with respect to v

leads to

mi

2

∫
|v|2∂tfidv +

mi

2

∫
|v|2v · ∇xfidv +

1

2

∫
|v|2∇v · (e(E + v ×B)fi)dv = FEi,e .

In the third term integration by parts and the assumption that |v|2fi and v|v|2fi are
decreasing fast enough to zero for |v| → ∞ leads to

1

2

∫
|v|2∇v · (e(E + v ×B)fi)dv = −

∫
ev · (E + v ×B)fidv = −eEniui.

The term with the magnetic field vanishes since v is orthogonal to v ×B.
We obtain the macroscopic equation

∂t

(
mi

2
ni|ui|2 +

3

2
niTi

)
+∇x ·Qi − eEuini = FEi,e .

So all in all, we get the system in theorem 5.2.1.

5.2.3 Entropy inequality

In this section we want to show that the entropy inequality from theorem 2.1.7
remains true for the model (5.6) with its additional force terms.
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5.3 Deriving macroscopic MHD equations

Theorem 5.2.2 (Entropy inequality). Assume fi, fe > 0. With the assumption fi, fe,
vfi and vfe are decreasing fast enough to zero for |v| → ∞, we have the following
entropy inequality

∂t

(∫
fi ln fidv +

∫
fe ln fedv

)
+∇x ·

(∫
vfi ln fidv +

∫
vfe ln fedv

)
≤ 0,

with equality if and only if fi and fe are Maxwell distributions with equal mean velocity
and temperature.

Proof. We multiply the first equation of (5.6) by ln fi, the second one by ln fe,
integrate with respect to v and add both. The terms which are new compared to the
case of neutral particles are the terms with the magnetic and electric fields. There we
use integration by parts and Gauß theorem.∫

ln fi∇v ·
(
e

mi
(E + v ×B)fi

)
dv = −

∫
1

fi
∇vfi ·

(
e

mi
(E + v ×B)fi

)
dv

= −
∫
∇vfi ·

(
e

mi
(E + v ×B)

)
dv = −

∫
∇v ·

(
e

mi
(E + v ×B)fi

)
dv = 0.

The last but one equality is due to the fact that the ith component of v × B is
independent of vi. We can do the same for the term coming from the electrons, so∫

ln fe∇v ·
(
−e
me

(E + v ×B)fe

)
dv = 0.

So the additional terms turn out to be zero and we obtain the same inequality for the
entropy as in the case of neutral particles.

5.3 Deriving macroscopic MHD equations

In this section we want to illustrate the model in the case of ions and electrons. We
want to show that it is possible to put the proposed kinetic model in the context of
the typical macroscopic equations for charged particles. Therefore we want to derive
the equations of ideal magnetohydrodynamics, from our model. You can also find a
similar derivation in [15] but for an isothermal flow.

5.3.1 The BGK model for ions and electrons

We consider the case of ions and electrons and set ε = m2

m1
as it is motivated in section

5.2.1. For simplicity, we take δ = 0, α = m2

m1+m2
and γ = 0 in (2.6) and (2.10),

although the MHD equations can also derived from the general model. We use the
index i for the ions and e for the electrons. Then the particles are subjected to the
Lorentz force Fi = e(E + v×B) and Fe = −e(E + v×B), where e is the elementary
charge and E and B the mean electric and magnetic fields given by the Maxwell
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5 Extension to a kinetic model for plasmas consisting of electrons and ions

equations (5.1), (5.2), (5.3) and (5.4) with the charge density given by (5.9) and
the charge current given by (5.10). In this case the model (5.6) rewrites as

∂tfi + v · ∇xfi +
e(E + v ×B)

mi
· ∇vfi = νiini(Mi − fi) + νiene(Mie − fi),

∂tfe + v · ∇xfe −
e(E + v ×B)

me
· ∇vfe = νeene(Me − fe) +

mi

me
νieni(Mei − fe).

(5.14)

5.3.2 Macroscopic equations for electrons and ions

In order to derive macroscopic equations, we multiply the first equation of (5.14)
with (1,miv,

mi
2 |v|

2), and the second with (1,mev,
me
2 |v|

2). Then we integrate them
with respect to the velocity. We obtain the system derived in theorem 5.2.1 with the
specific values for α, δ and γ. The obtained macroscopic system is not closed since
we obtain terms of the form

∫
v⊗ vfidv,

∫
v⊗ vfedv,

∫
|v|2vfidv and

∫
|v|2vfedv. All

the other terms are functions of known quantities given in (5.5). We propose the
following closure. There are plasmas where the two species first relax to its own
equilibrium and then to a global one. According to chapter 1.9 in [11], we expect
that plasmas are typically not in global equilibrium, although the components may
be in a partial equilibrium. This means, the electrons are in equilibrium with itself
but not with the ions, and the other way round. So in our considerations we assume
that each species is in equilibrium with itself, e.g. setting fi = Mi and fe = Me in the
equations from theorem 5.2.1. In this way, we obtain a closed system of equations
for the conservation of mass, momentum and energy.

∂tnk +∇x(nkuk) = 0, k = i, e,

∂t(miniui) +∇x(niTi) +∇x · (miui ⊗ uini)− eni(E + ui ×B)

= νiemineni(ue − ui),

∂t(meneue) +∇x(neTe) +∇x · (meue ⊗ uene) + ene(E + ue ×B)

= νeimeneni(ui − ue),

∂t

(
mi

2
ni|ui|2 +

3

2
niTi

)
+∇x ·

(
5

2
niTiui

)
+∇x ·

(mi

2
ni|ui|2ui

)
− eniEui

=
1

2
νienenimi(|ue|2 − |ui|2) + νie

3

2
nine

mi

me +mi
(Te − Ti),

∂t

(
me

2
ne|ue|2 +

3

2
neTe

)
+∇x ·

(
5

2
neTeue

)
+∇x ·

(me

2
ne|ue|2ue

)
+ eneEue

=
1

2
νeinenime(|ui|2 − |ue|2) + νei

3

2
nine

me

me +mi
(Ti − Te).
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5.3 Deriving macroscopic MHD equations

Note that we used the specific values δ = 0, α = m2

m1+m2
and γ = 0 in the exchange

terms. In order to determine the time evolution of the electric and magnetic field, we
couple the system with the Maxwell equations.

∇x · E =
1

ε0
ρc,

∇x × E + ∂tB = 0,

∇x ×B = µ0j + µ0ε0∂tE,

∇x ·B = 0,

ρc = e(ni − ne),
j = e(niui − neue),

where µ0, ε0 are the magnetic and electric vacuum permittivity. From physics, we
expect that these two constant are linked by the speed of light c via c2 = 1

µ0ε0
.

5.3.3 Dimensionless equations

First we define dimensionless variables of the time t, the length x, the velocities
ue, ui, the number densities ne, ni, the temperatures Te, Ti, the magnetic field B, the
electric field E, the electron-ion collision frequency νei, the ion-electron collision
frequency νie and the current density j, for example t′ =t/t̄ for a typical time scale t̄.
In particular, the order of magnitudes of some quantities are assumed to be linked:
We assume that both species have densities, mean velocities and temperatures of the
same order of magnitude, e.g. n̄i = n̄e = n̄, ūi = ūe = ū = x̄/t̄ and T̄i = T̄e = T̄ .
The last two assumptions allow to assume that we are close to a thermodynamic
equilibrium in which the two mean velocities and temperatures would be equal.
Further, we assume that Ē = B̄ū. From non-dimensionalizing the first two Maxwell
equations we see that this means that the electric field induced by a change of
the magnetic field in time dominates over the fields which arise from charges and
currents. Furthermore, we assume that B̄ = µ0x̄j̄, which means that the magnetic
field induced by currents dominates over the magnetic field due to changes of the
electric field in time.

This leads to the following equations, where now the variables are non-dimensional

∂tnk +∇x · (nkuk) = 0, k = i, e,

∂t(niui) + C1 ∇x(niTi) +∇x · (niui ⊗ ui)− C2 ni(E + ui ×B) =

C3 νieneni(ue − ui),

C4 ∂t(neue) + C1 ∇x(neTe) + C4 ∇x · (neue ⊗ ue) + C2 ne(E + ue ×B) =

C3 νieneni(ui − ue),
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C1 ∂t

(
3

2
niTi

)
+ ∂t

(
1

2
ni|ui|2

)
+ C1 ∇x ·

(
5

2
niTiui

)
+∇x ·

(
1

2
ni|ui|2ui

)
= C2 Eniui + C3

1

2
νieneni(|ue|2 − |ui|2) +

1

1 + C4
C3C1νie

3

2
nine(Te − Ti),

C1 ∂t

(
3

2
neTe

)
+ C4 ∂t

(
1

2
ne|ue|2

)
+ C1 ∇x ·

(
5

2
neTeue

)
+ C4∇x ·

(
1

2
ne|ue|2ue

)
= −C2 Eneue + C3

1

2
νeineni(|ui|2 − |ue|2) +

1

1 + C4
C3C1 νie

3

2
nine(Ti − Te),

together with the Maxwell equations

C5M ∇x · E = ρc,

∇x × E + ∂tB = 0,

∇x ×B = j +M∂tE,

∇x ·B = 0,

ρc = (ni − ne),
C5 j = (niui − neue).

The constants Ci, i = 1, ..., 5 and M are dimensionless parameters. In particular,

C1 =
n̄T̄

min̄ū2
, C2 =

eB̄t̄

mi
, C3 = ν̄ien̄t̄, C4 =

me

mi
, C5 =

j̄

en̄ū
and M =

ū2

c2
,

coming from non-dimensionalizing. The physical meaning is the following: C1

describes the ratio of the typical scale of thermal energy n̄T̄ and of the kinetic energy
min̄ū

2 of ions. For the meaning of C2, we consider an ion travelling with a speed
perpendicular to a magnetic field at distance r, the force due to the magnetic field
eB̄ū on the particle acts as a centripetal force mū2

r , so the norm of the forces is equal

mū2

r
= eB̄ū,

which is equivalent to ω := ū
r = eB̄ū

m which describes a frequency called cyclotron
frequency. So C2 is the product of the typical scale of the cyclotron frequency and the
typical time scale. C3 is the ratio of the macroscopic time scale and the time scale
induced by the collisions. C4 is the mass ratio and M the typical scale of the speed
squared and the speed of light squared. Finally, C5 is the typical scale of the current
density induced by electric fields over the typical scale of the current induced by the
flow of the particles.

5.3.4 The limits to the MHD equations

Now we consider the formal limit of the mass ratio C4 → 0 and the non-relativistic
limit M → 0.
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5.3 Deriving macroscopic MHD equations

Theorem 5.3.1. The formal limit of the mass ratio C4 → 0 and the non-relativistic limit
M → 0 of the non-dimensionalized system with the remaining parameters C1, C2, C3

and C5 remaining finite is the system

∂tn+∇x · (nu) = 0,

∂t(nu) + C1 ∇x(nT ) +∇x · (nu⊗ u) = C2C5 j ×B,

C1 ∂t

(
3

2
nT

)
+ ∂t

(
1

2
n|u|2

)
+ C1 ∇x ·

(
5

2
nu(Te − Ti)

)
− C1C5∇x ·

(
5

2
Tj

)
+∇x ·

(
1

2
n|u|2u

)
= C2C5 Ej,

C3

C2
C1 ∇x(nTe) + C3 n(E + u×B)− C3C5(j ×B) =

C2
3

C2
C5 νeinj,

C3

C2
C1 ∂t

(
3

2
nTe

)
+
C3

C2
C1 ∇x ·

(
5

2
nTeu

)
− C3

C2
C1C5∇x ·

(
5

2
Tej

)
= −C3 En

(
u− C5

j

n

)
+
C2

3

C2
C5 νeinju−

C2
3

C2
C2

5
1

2
νei|j|2 +

C3

C2
C3C1 νei

3

2
n2(Ti − Te),

∇x × E + ∂tB = 0,

∇x ·B = 0,

∇x ×B = j,

C5j = n(u− ue).

Proof. We start with the non-dimensionalized system from section 5.3.3. In the limit
M → 0, we get from the first Maxwell equation that ni and ne converge formally to
the same limit n. The third Maxwell equation simplifies to

∇x ×B = j.

We denote the limit of ui by u. Then we get from conservation of the number of ions

∂tn+∇x · (nu) = 0.

In the limit C4 → 0, the momentum equation of the electrons turns into

C1 ∇x(nTe) + C2 n(E + ue ×B) = C3 νienn(u− ue). (5.15)

The limit of the sum of the momentum equations with T := Ti + Te gives

∂t(nu) + C1 ∇x(nT ) +∇x · (u⊗ un) + C2 n(ue − u)×B = 0. (5.16)
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The other Maxwell equations turn into

∇x × E + ∂tB = 0,

∇x ·B = 0,

C5j = n(u− ue). (5.17)

The energy equation of the electrons leads to

C1 ∂t

(
3

2
nTe

)
+ C1 ∇x ·

(
5

2
nTeue

)
= −C2 Eneue + C3

1

2
νein

2(|u|2 − |ue|2) + C3C1 νei
3

2
n2(Ti − Te).

(5.18)

From the sum of the energy equations we get

C1 ∂t

(
3

2
nT

)
+ ∂t

(
1

2
n|u|2

)
+ C1 ∇x ·

(
5

2
(nTeue + nTiu)

)
+∇x ·

(
1

2
n|u|2u

)
= C2 En(u− ue).

(5.19)

Using C5j = n(u− ue), we get from (5.15), (5.16) and (5.19)

C1 ∇x(nTe) + C2 n(E + ue ×B) = C3C5 νeinj, (5.20)

∂t(nu) + C1 ∇x(nT ) +∇x · (nu⊗ u) = C2C5 j ×B,

C1 ∂t

(
3

2
nT

)
+ ∂t

(
1

2
n|u|2

)
+ C1 ∇x ·

(
5

2
(nTeue + nTiu)

)
+∇x ·

(
1

2
n|u|2u

)
= C2C5 Ej.

(5.21)

Writing |u|2 − |ue|2 as (u− ue) · (u+ ue) and again replacing j by C5j = n(u− ue),
we obtain from (5.18)

C1 ∂t

(
3

2
nTe

)
+ C1 ∇x ·

(
5

2
nTeue

)
= −C2 Eneue + C3C5

1

2
νeinj(u+ ue) + C3C1 νei

3

2
nn(Ti − Te).

(5.22)

Equations (5.20) and (5.22) are equivalent to

C1 ∇x(nTe) +
C2

C3
C3 n(E + ue ×B) =

C2
3

C2

1
C3

C2

C5 νeinj, (5.23)
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C1 ∂t

(
3

2
nTe

)
+ C1 ∇x ·

(
5

2
nTeue

)
= −C2

C3
C3 Enue +

C2
3

C2

1
C3

C2

C5
1

2
νeinj(u+ ue) + C3C1 νei

3

2
n2(Ti − Te).

(5.24)

We multiply (5.23) and (5.24) by C3

C2
and insert ue = u− C5

j
n from (5.17), we get

from (5.21), (5.23) and (5.24)

C1 ∂t

(
3

2
nT

)
+ ∂t

(
1

2
n|u|2

)
+ C1 ∇x ·

(
5

2
nu(Te − Ti)

)
− C1C5∇x ·

(
5

2
Tj

)
+∇x ·

(
1

2
n|u|2u

)
= C2C5 Ej,

C3

C2
C1 ∇x(nTe) + C3 n(E + u×B)− C3C5(j ×B) =

C2
3

C2
C5 νeinj,

C3

C2
C1 ∂t

(
3

2
nTe

)
+
C3

C2
C1 ∇x ·

(
5

2
nTeu

)
− C3

C2
C1C5∇x ·

(
5

2
Tej

)
= −C3 En

(
u− C5

j

n

)
+
C2

3

C2
C5 νeinju−

C2
3

C2
C2

5
1

2
νei|j|2 +

C3

C2
C3C1 νei

3

2
n2(Ti − Te).

Next, we consider the formal limit C5 → 0 and C3

C2
→ 0, such that C2C5 and C2

3C5

C2

remain bounded away from zero. Physically the first limit means that the current
from moving particles en̄ū dominates over the current due to electric forces j̄. The
second limit means that the cyclotron frequency eB̄

mi
dominates over the collision

frequency ν̄ien̄, while the current due to electric fields j̄ per cyclotron time 1/ eB̄mi over
the current induced by the flow en̄ū in a typical time scale t̄, remains bounded away
from zero. Moreover, the ratio of the collision frequency and the cyclotron frequency
is assumed to be of the same order of the electric current per collision time 1

ν̄ien̄
over

the current induced by the flow per typical time scale. All in all, we get the following
theorem.

Theorem 5.3.2. As C5 → 0 and C3

C2
→ 0, such that C2C5 and C2

3C5

C2
remain bounded

away from zero, formally the solution of the system in theorem 5.3.1 tends to the
solution of

∂tn+∇x · (nu) = 0, (5.25)

∂t(nu) + C1∇x(nT ) +∇x · (nu⊗ u) = C2C5 j ×B,
(5.26)

C1∂t

(
3

2
nT

)
+ ∂t

(
1

2
n|u|2

)
+ C1∇x ·

(
5

2
nTu

)
+∇x ·

(
1

2
n|u|2u

)
= C2C5 Ej,

(5.27)
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(E + u×B) =
C3C5

C2
νeij, (5.28)

Eu =
C2

3C5

C2
νeiju, (5.29)

∇x ×B = j, (5.30)

∇x × E + ∂tB = 0, (5.31)

∇x ·B = 0. (5.32)

This is a direct consequence of theorem 5.3.1. Last we consider the formal limit
C3 → 0 which means that interactions of ions and electrons can be neglected. In
addition, we choose the special regime where C1 = 1, that is n̄T̄ = min̄ū

2 and
C2C5 = 1 in order to obtain the well-known conservation form for ideal MHD.

Theorem 5.3.3. As C3 → 0 and in the special regime C1 = 1 and C2C5 = 1, formally,
we obtain the system of ideal MHD equations

∂tn+∇x · (nu) = 0,

∂t(nu) +∇x(u⊗ un+ (p+
1

2
|B|2)1−B ⊗B) = 0,

∂t

(
1

2
n|u|2 +

3

2
p+

1

2
|B|2

)
+∇x ·

(
1

2
n|u|2u+

5

2
pu+ |B|2u−B · (B ⊗ u)

)
= 0,

∂tB +∇x · (B ⊗ u− u⊗B) = 0,

∇x ·B = 0.

Proof. In the limit C3 → 0, the equations (5.28) and (5.29) turn into

E + u×B = 0, (5.33)

Eu = 0. (5.34)

We insert j = ∇x × B from (5.30) into (5.26). The l-th component of the term
(∇x × B) × B can be simplified to

∑3
n=1Bn(∂xlBn − ∂xnBl), l = 1, 2, 3. Since

∇x ·B = 0, we can add (∇x ·B)Bl, so we get
∑3
n=1Bn(∂xlBn−∂xnBl) + (∇x ·B)Bl

which is the l−th component of −∇x · ( 1
2 |B|

21−B ⊗B). Thus, (5.26) turns into

∂t(nu) +∇x ·
(
u⊗ un+

(
nT +

1

2
|B|2

)
1−B ⊗B

)
= 0.

Now, we insert E = −u × B from (5.33) into (5.31). In a similar way again using
∇x ·B = 0, we obtain −∇x × (u×B) = ∇x · (B ⊗ u− u⊗B), so (5.31) leads to

∂tB +∇x · (B ⊗ u− u⊗B) = 0. (5.35)

Finally, inserting (5.30), (5.33), ∇x ·B = 0 and (5.35) into (5.27), leads to

∂t

(
1

2
n|u|2 +

3

2
nT +

1

2
|B|2

)
+∇x ·

(
1

2
n|u|2u+

5

2
nTu+ |B|2u−B · (B ⊗ u)

)
= 0.
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Chapter 6

Application to plasmas

As we mentioned in the previous chapter, there are several applications where a
mixture of ions and electrons needs to be modelled and simulated. In this chapter
we develop the prerequisites in order to simulate a mixture of ions and electrons
in a certain regime. The regime of the mixture is the following. In some regions
the mixture is near equilibrium in other regions it is far away from equilibrium. In
section 6.1 we extend a method called micro-macro decomposition from one species
to a gas mixture. Using this method we can derive a system of coupled kinetic and
macroscopic equations from the system of kinetic equations. The advantage of this
new system is that it is more appropriate in order to simulate a mixture which is
partly close to equilibrium. This is needed for example in the case of a plasma in a
Tokamak, a toroidal-shaped chamber where a plasma can be confined for the research
on controlled fusion. More details are described in the next section. In the following
section we want to consider two test cases which can be used to test the results of
a numerical simulation with the theory of the model. The first one considers the
space-homogeneous case. In the space-homogeneous case we can prove convergence
rates of the velocities and the temperatures to a common value and of the distribution
functions to Maxwell distributions. These estimates are derived in section 6.2.1. They
can be compared to the results of a numerical simulation. The second test case is
an extension of the theory of Landau damping to two species in section 6.2.2. It is
a theory which shows a physical behaviour of a mixture of ions and electrons. This
theoretical result can also be compared to a result of a numerical simulation.

6.1 Kinetic/Fluid micro-macro decomposition for two com-
ponent plasmas

We want to model a plasma consisting of two species, electrons and one species of
ions. The kinetic description of a plasma is based on the Vlasov equation. In [28],
Crestetto, Crouseilles and Lemou developed a numerical simulation of the Vlasov-BGK
equation in the fluid limit using particles. They consider a Vlasov-BGK equation
for the electrons and treat the ions as a background charge. In [28] a micro-macro
decomposition is used as in [12] where asymptotic preserving schemes have been
derived in the fluid limit. In [28], the approach in [12] is modified by using a particle
approximation for the kinetic part, the fluid part being always discretized by standard
Finite Volume schemes. Other approaches where a kinetic description of one species
is written in a micro-macro decomposition can be seen in [30, 31].
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6 Application to plasmas

In this section, we want to model both the electrons and the ions by a Vlasov-BGK
equation instead of treating one only as a background charge. Such a two component
kinetic description of the gas mixture has for example importance in a Tokamak
plasma. In regions next to the wall of the Tokamak, the plasma is close to a fluid, but
the kinetic description is mandatory in the core plasma so that a hybrid fluid/kinetic
description is adequate. For this, we want to use the approach in [28], since it has the
following advantages: the presented scheme has a much less level of noise compared
to the standard particle method and the computational cost of the micro-macro model
is reduced in the fluid regime since a small number of particles is needed for the
micro part.

From the modelling point of view, we want to describe this gas mixture using two
distribution functions via the Vlasov equation with interaction terms on the right-
hand side. For the interactions we use the BGK approach, since BGK models give
rise to efficient numerical computations, see for example [72, 41, 35, 12, 34, 13, 28].
In previous sections we have seen that there are two types of BGK models for
gas mixtures, one with one relaxation term on the right-hand side, one with two
interaction terms one the right-hand side. In this section we are interested in the
second type of models, and use the model developed in chapter 2. In this type of
model the two different types of interactions, interactions of a species with itself and
interactions of a species with the other one, are kept separated. Therefore we can
see how these different types of interactions influence the trend to equilibrium. From
the physical point of view, we expect two different types of trends to equilibrium.
For example, if the collision frequencies of the particles of each species with itself
are larger compared to the collision frequencies related to interspecies collisions,
we expect that we first observe that the relaxation of the two distribution functions
to its own equilibrium distribution is faster compared to the relaxation towards a
common velocity and a common temperature. This effect is clearly seen in the model
presented in chapter 2 since the two types of interactions are separated.

The outline of this section is as follows: In section 6.1.1 we illustrate the idea
of a micro-macro decomposition in the case of one species. In section 6.1.2 we
want to mention the usefulness of this micro-macro decomposition by giving a
physical application where it is reasonable to apply it. In section 6.1.3 we present
the model for a plasma consisting of electrons and one species of ions and write it in
dimensionless form. In section 6.1.4 we derive the micro-macro decomposition of the
model presented in section 6.1.3. Sections 6.1.3, 6.1.3 and 6.1.4 are also presented
in [29] by Crestetto, Klingenberg and Pirner.

6.1.1 The idea of the micro-macro decomposition for one species

We want to illustrate the method of the micro-macro decomposition in the case of
one species for the Vlasov-Poisson-BGK equation using particles done in [28]. We
consider a distribution function f(x, v, t) ≥ 0 and E(x, t) is a self consistent electric
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6.1 Kinetic/Fluid micro-macro decomposition for two component plasmas

field where x ∈ [0, L] is the position and v ∈ R the velocity and t ≥ 0 the time. The
Vlasov-BGK equation with initial data reads{

∂tf + v ∂xf = 1
ε (M − f),

f(x, v, 0) = f0(x, v),
(6.1)

coupled with the Maxwell equation{
∂xE(x, t) =

∫
f(x, v, t)dv − 1,∫ L

0
E(x, t)dx = 0,

(6.2)

and f and E are assumed to have periodic boundary conditions in x. The Maxwell
distribution M in one dimension is given by

M =
n√
2π Tm

exp

(
−|v − u|

2

T/m

)
,

with mass m and the moments∫
f(v)

 1
v

m|v − u|2

 dv =:

 n
nu
nT

 .

The idea of the micro-macro decomposition is the following. We decompose the
distribution function f into

f = M + g.

With this decomposition we can derive the system

∂tg + (1−ΠM )(v∂xg + E∂vg) =
1

ε
[−g − ε(1−ΠM )(v∂xM + E∂vM)],

∂t

 n
nu

1
2nu

2 + 1
2n

T
m

+ ∂x

 nu
nu2 + n Tm

1
2nu

3 + 3
2n

T
mu

+ ∂x

∫  1
v
v2

2

 gdv

 =

 0
nE
nEu

 ,

(6.3)

where ΠM denotes the orthogonal projection in L2( 1
M dv) onto the null space of the

BGK operator. All in all, one can show the following theorem.

Theorem 6.1.1. If (f,E) is a solution of (6.1), (6.2), then ((n, u, T ), g, E) =
(
∫

(1, vn ,
m
n |v − u|

2)fdv, f −M,E) is a solution of (6.3), (6.2), with the associated
initial data

(n(0), u(0), T (0)) =

(∫
(1, v,

v2

2
)f0(v)dv

)
, g(0) = f(0)−M(0). (6.4)

Conversely, if (n, u, T, g, E) is a solution of (6.3), (6.2) with initial data (6.4), then∫
(1, vn ,

m
n |v − u|

2)gdv = 0 and f = M + g is a solution to (6.1), (6.2).
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The proof is given in [12] without the electric field. In [28] the first part of the
theorem is shown with an electric field. We will not repeat it here since we carry
it out later in the two species case. The advantage from the numerical point of
view is the following. The equation (6.1) is a kinetic equation. The system (6.3)
is a system consisting of a kinetic type equation and a macroscopic type equation.
The kinetic equation is solved by a particle in cell (PIC) method, the macroscopic
equation by Finite Volume schemes. The particle-in-cell method is more costly from
the computational point of view. So the advantage of the system (6.3) is the following.
If we are close to equilibrium we can take less particles in the particle-in-cell method
since the time evolution is mainly described by the macroscopic equation which
reduces the computational cost.

6.1.2 Physical application for the micro-macro decomposition

One application with a plasma is the controlled thermonuclear fusion. It is described
in [80]. The aim of a controlled nuclear fusion is to develop new energy sources.
According to principles of relativistic physics we can produce energy by performing a
transformation that removes the mass. There are two possibilities to obtain this, a
fission reaction which generates two lighter nuclei from the nucleus of a heavy atom;
and a fusion reaction that creates a heavier nucleus from two light atoms. Controlled
fusion is still in the research stage. The temperatures required for thermonuclear
fusion are larger than one hundred million degrees. At this temperatures the electrons
are totally freed from their atoms so that one obtains a gas of electrons and ions
which is a totally ionized plasma. One project concerning thermonuclear fusion is
the ITER project. There, the plasma is confined in a toroidal shaped chamber called
a Tokamak. Inside the Tokamak we have a regime in which it is useful to use the
micro-macro decomposition. In regions next to the wall of the Tokamak, the plasma
is close to a fluid, but the kinetic description is mandatory in the core plasma so that
a hybrid fluid/kinetic description is adequate.

6.1.3 The two species model for electrons and ions

In this section we present in 1D the Vlasov-BGK model for a mixture of two species
developed in chapter 5 and mention its fundamental properties like the conservation
properties. Then, we present its dimensionless form. For numerical reasons it is
useful to use the dimensionless form, since in this case we only have to deal with the
mass ratio me

mi
and not with the individual masses of electrons and ions which are

very small.

1D Vlasov-BGK model for a mixture of two species

In this section we will repeat the Vlasov-BGK model for a mixture of two species
without magnetic field in the one species case for the convenience of the reader.

We consider a plasma consisting of electrons denoted by the index e and one
species of ions denoted by the index i. Thus, our kinetic model has two distribution
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6.1 Kinetic/Fluid micro-macro decomposition for two component plasmas

functions fe(x, v, t) > 0 and fi(x, v, t) > 0 where x ∈ [0, L], L > 0 and v ∈ R are the
phase space variables and t ≥ 0 the time.

Furthermore, for any fi, fe : [0, L]× R× R+
0 → R with (1 + |v|2)fi,

(1 + |v|2)fe ∈ L1(dv), fi, fe ≥ 0 we relate the distribution functions to macroscopic
quantities by mean-values of fk, k = i, e

∫
fk(v)

 1
v

mk|v − uk|2

 dv =:

 nk
nkuk
nkTk

 , k = i, e, (6.5)

where mk is the mass, nk the number density, uk the mean velocity and Tk the
temperature of species k, k = i, e. Note that in this chapter we shall write Tk instead
of kBTk, where kB is Boltzmann’s constant.

We want to model the time evolution of the distribution functions by Vlasov-BGK
equations.

∂tfi + v∂xfi +
FLi
mi

∂vfi = νiini(Mi − fi) + νiene(Mie − fi),

∂tfe + v∂xfe +
FLe
me

∂vfe = νeene(Me − fe) + νeini(Mei − fe),
(6.6)

with the mean-field forces FLi and FLe specified later and the Maxwell distributions

Mk(x, v, t) =
nk√
2π Tk

mk

exp

(
−|v − uk|

2

2 Tk
mk

)
, k = i, e,

Mkj(x, v, t) =
nkj√
2π

Tkj
mk

exp

(
−|v − ukj |

2

2
Tkj
mk

)
, k, j = i, e, k 6= j,

(6.7)

where νiini and νeene are the collision frequencies of the particles of each species
with itself, while νiene and νeini are related to interspecies collisions. To be flexible
in choosing the relationship between the collision frequencies, we now assume the
relationship

νie = ενei, 0 < ε ≤ 1,

νii = βiνie, νee = βeνei =
βe
ε
νie, βi, βe > 0.

(6.8)

The restriction ε ≤ 1 is without loss of generality. If ε > 1, exchange the notation i
and e and choose 1

ε . We assume that all collision frequencies are positive. In addition,
we take into account an acceleration due to interactions using mean-field Lorentz
forces FLi , F

L
e . We assume that the magnetic field is negligible compared to the

electric field. Therefore the Lorentz forces are given by

FLi (x, t) = e E(x, t) and FLe (x, t) = −e E(x, t),
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6 Application to plasmas

where e denotes the elementary charge. For simplicity, we assumed that the ions
have the charge e. The electric field is given by the Maxwell equation

∂xE(x, t) = ρ(x, t), (6.9)

where

ρ(x, t) = e

∫ ∞
−∞

(fi(x, v, t)− fe(x, v, t))dv, (6.10)

describes the charge density.
The functions fk and E are submitted to the following periodic boundary condi-

tions

fk(0, v, t) = fk(L, v, t), for every v ∈ R, t ≥ 0,

E(0, t) = E(L, t), for every t ≥ 0.

In order to get a well-posed problem, a zero-mean electrostatic condition has to be
added, ∫ L

0

E(x, t)dx = 0, for every t ≥ 0,

together with an initial condition

fk(x, v, 0) = f0
k (x, v), for every x ∈ [0, L], v ∈ R.

From the initial condition on fk, we can compute an initial condition of the charge
density ρ given by (6.10). From this we can compute the initial data of E using (6.9).
In the velocity v we either assume periodic boundary conditions on a bounded subset
of R or a fast enough decay of fi and fe to zero for |v| → ∞.

The Maxwell distributions Mi and Me in (6.7) have the same moments as fi and
fe, respectively. With this choice, we guarantee the conservation of mass, momentum
and energy in interactions of one species with itself (see section 2.1.2). The remaining
parameters nie, nei, uie, uei, Tie and Tei will be determined using conservation of the
number of particles, conservation of total momentum and conservation of total
energy, together with some symmetry considerations.

If we assume that

nie = ni and nei = ne, (6.11)

uie = δui + (1− δ)ue, δ ∈ R, (6.12)

and

Tie = αTi + (1− α)Te + γ|ui − ue|2, 0 ≤ α ≤ 1, γ ≥ 0, (6.13)
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6.1 Kinetic/Fluid micro-macro decomposition for two component plasmas

we have conservation of the number of particles, of total momentum and total energy
provided that

uei = ue −
mi

me
ε(1− δ)(ue − ui), (6.14)

Tei =

[
εmi(1− δ)

(
mi

me
ε(δ − 1) + δ + 1

)
− εγ

]
|ui − ue|2

+ε(1− α)Ti + (1− ε(1− α))Te,

(6.15)

see section 2.1.5 and section 5.2. In order to ensure the positivity of all temperatures,
we need to impose restrictions on δ and γ given by

0 ≤ γ ≤ mi(1− δ)
[
(1 +

mi

me
ε)δ + 1− mi

me
ε

]
, (6.16)

and
mi
me
ε− 1

1 + mi
me
ε
≤ δ ≤ 1, (6.17)

see theorem 2.1.4.

Notes on the existence of solutions

In chapter 4 we presented an existence and uniqueness result of the model presented
in chapter 2. In this chapter we consider the extended model for ions and electrons
given by (6.6). This model has additional force terms due to an acceleration of
charged particles. The force is determined by the Maxwell equation (6.9) together
with the charge density (6.10). From physics we expect that the electric field E(x, t)
can be written as a gradient of a potential φ(x, t). Then φ solves a Poisson equation
and we have to consider kinetic equations with force terms coupled to a Poisson
equation. So it is not clear if we still have existence and uniqueness of mild solutions.
In the case of one species with a force term given by a Poisson equation, there is an
existence result of mild solutions given by Rejeb in [75]. The difference compared to
the BGK equation for one species without a force term is the following. In the case
of the BGK equation for one species without a force term we are able to compute
the characteristic curves. This ended in a fixed-point argument as in the proof of the
Picard-Lindelöf theorem or the fixed-point theorem of Banach since we are able to
show that the right hand side in the definition of a mild solution is a contraction. In
the case of the BGK equation for one species with force term in one velocity and one
space dimension, we obtain the characteristics

dt(s)

ds
= 1,

dx(s)

ds
= v(s),

dv(s)

ds
= −∂xφ(x(s), s),

(6.18)
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where φ solves a Poisson equation in one velocity and one space dimension with a
right-hand side given by

∫
f(x, v, t)dv. We are not able to solve the characteristics

explicitly. So at this point it is not possible to show that the right-hand side in the
definition of a mild solution is a contraction. So Rejeb in [75] suggested to use the
fixed point theorem of Schauder (in Werner, [86]).

Theorem 6.1.2 (Fix point theorem of Schauder). Let S be a convex, compact and
non-empty subset of a Banach space X and let Φ : S → S be a continuous map. Then Φ
has at least one fix point in S.

So the two essential things in the existence proof of Rejeb in [75] are to find an
appropriate space S which has the properties of theorem 6.1.2 and to show that the
right hand side in the definition of a mild solution is a continuous map in f . The
latter thing is done in a similar way as the Lipschitz continuity in the case without a
force term. Since we can not compute the characteristic curves explicitly this leads to
a more careful study of the characteristics. Rejeb uses an estimate which shows how
the characteristics changes if one changes the function f on the right hand side of
the Poisson equation into a function g. This estimate has been proven by Ukai and
Okabe in [82], it can be summarized as the following lemma.

Lemma 6.1.3. Let (xf (s), vf (s)) and (xg(s), vg(s)) be solutions to the characteristic
equations (6.18) coupled with the Poisson equation for φ where the charge density is
computed via (6.10) with the distribution functions f and g, respectively. Then we have
the following estimate

max{|xf (s)− xg(s)|, |vf (s)− vg(s)|} ≤ C(t)||Ef − Eg||L1(Ω).

The set S is a subset of Ω where Ω contains the position space, the velocity space
and the time interval. Rejeb defined a nonempty, convex, compact subset S of Ω
and thus Schauder’s theorem could be applied. The estimate is used to prove that
the Maxwell distribution on the right-hand side is Lipschitz continuous in f . This
estimate is actually proven for two species in [82]. So when we want to extend the
existence result from one species with force term from [75], we have to combine the
idea of [75] with the analysis of the characteristics for two species from [82] and the
estimates of the right-hand side of the BGK model for mixtures proven in chapter 4.

Dimensionless form of the two species model

We want to write the BGK model presented in section 6.1.3 in dimensionless form.
The principle of non-dimensionalization can also be found in chapter 2.2.1 in [78]
for the Boltzmann equation and in [15] for macroscopic equations. First, we define
dimensionless variables for the time t ∈ R+

0 , the length x ∈ [0, L], the velocity v ∈ R,
the distribution functions fi, fe, the number densities ni, ne, the mean velocities
ui, ue, the temperatures Ti, Te, the electric field E and of the collision frequency
νie. Then, dimensionless variables of the other collision frequencies νii, νee, νei can
be derived by using the relationships (6.8). We start with choosing typical scales
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6.1 Kinetic/Fluid micro-macro decomposition for two component plasmas

denoted by a bar and then define dimensionless quantities by dividing the previous
quantity by its typical scale.

t′ = t/t̄, x′ = x/x̄, v′ = v/v̄,

f ′i(x
′, v′, t′) =

x̄v̄

Ni
fi(x, v, t), f ′e(x

′, v′, t′) =
x̄v̄

Ne
fe(x, v, t),

where Ni is the total number of ions and Ne the total number of electrons in the
volume x̄3. We assume Ni = Ne =: N . This assumption is in accordance with the
typical values in a plasma described in [15]. Further, we choose

n′i = ni/n̄i, n′e = ne/n̄e, n̄i = n̄e =
N

x̄
,

E′ = E/Ē,

u′i = ui/ūi, u′e = ue/ūe, ūe = ūi = v̄,

T ′i = Ti/T̄i, T
′
e = Te/T̄e, T̄e = T̄i = miv̄

2,

ν′ie = νie/ν̄ie.

Now we want to write equations (6.6) in dimensionless variables. We start with
the Maxwell distribution in (6.7) and (6.12)-(6.15). We replace the macroscopic
quantities ni, ui and Ti in Mi by their dimensionless expressions and obtain

Mi =
n′in̄i√
2π

T̄iT ′i
mi

exp

(
−|v

′v̄ − u′iūi|2mi

2T ′i T̄i

)
.

If we assume that v̄2 = |ūi|2 = T̄i
mi

, we obtain

Mi =
n̄i
v̄

n′i√
2πT ′i

exp

(
−|v

′ − u′i|2

2T ′i

)
=:

n̄i
v̄
M ′i . (6.19)

The relationship which is used on ūi and T̄i is in accordance with the typical values in
a plasma described in [15]. In the Maxwell distribution Me we assume T̄i = T̄e =: T̄
and obtain in the same way as for Mi

Me =
n̄e
v̄

(
me

mi

) 1
2 n′e√

2πT ′e
exp

(
−|v

′ − u′e|2

2T ′e

me

mi

)
=:

n̄e
v̄
M ′e.

Now, we consider the Maxwell distribution Mie in (6.7) and its velocity uie in
(6.12) and its temperature Tie in (6.13). Again we use v̄ = ūi = ūe and v̄2 = T̄

mi
=

T̄i
mi

= T̄e
me

me
mi

and obtain

uie = δu′iūi + (1− δ)u′eūe = (δu′i + (1− δ)u′e)v̄ =: v̄u′ie,

Tie = αT ′i T̄i + (1− α)T ′eT̄e + γ|v̄|2|u′i − u′e|2

= mi|v̄|2[αT ′i + (1− α)T ′e +
γ

mi
|u′i − u′e|2] =: |v̄|2miT

′
ie,

Mie =
n′in̄i√
2πv̄2T ′ie

exp

(
−|v

′ − u′ie|2

2T ′ie

)
=:

n̄i
v̄
M ′ie.

(6.20)
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With the same assumptions we obtain for uei, Tei and Mei in a similar way the
expressions

uei = [(1− mi

me
ε(1− δ))u′e +

mi

me
ε(1− δ)u′i]v̄ =: u′eiv̄,

Tei = [(1− ε(1− α))T ′e + ε(1− α)T ′i ]T̄

+ (εmi(1− δ)(
mi

me
ε(δ − 1) + δ + 1)− εγ)|u′i − u′e|2|v̄|2

= [(1− ε(1− α))T ′e + ε(1− α)T ′i ]|v̄|2me
mi

me

+ (εmi(1− δ)(
mi

me
ε(δ − 1) + δ + 1)− εγ)|u′i − u′e|2|v̄|2 =: |v̄|2me

mi

me
T ′ei,

Mei =
n̄e
v̄

me

mi

n′e√
2πT ′ei

exp(−|v
′ − u′ei|2

2T ′ei

me

mi
) =:

n̄e
v̄
M ′ei.

Now we replace all quantities in (6.6) by their non-dimensionalized expressions.
For the left-hand side of the equation for the ions we obtain

∂tfi + v∂xfi +
e

mi
E∂vfi

=
1

t̄

N

x̄v̄
∂t′f

′
i +

1

x̄

N

x̄v̄
v̄v′∂x′f

′
i +

N

x̄v̄

1

v̄
Ē
e

mi
E′∂v′f

′
i ,

(6.21)

and for the right-hand side using that n̄k = N
x̄ , k = i, e, (6.8), (6.19) and (6.20), we

get

νiini(Mi − fi) + νiene(Mie − fi) = νieβini(Mi − fi) + νiene(Mie − fi)

= βiν̄ie
N

x̄v̄

N

x̄
ν′ien

′
i(M

′
i − f ′i) + ν̄ie

N

x̄v̄

N

x̄
ν′ien

′
e(M

′
ie − f ′i).

(6.22)

Using that the left-hand side of (6.21) and the left-hand side of (6.22) coincide, we
obtain that the right-hand side of (6.21) and the right-hand side of (6.22) are the
same. Multiplying this obtained equality by t̄x̄v̄

N and dropping the primes in the
variables leads to

∂tfi +
t̄v̄

x̄
v∂xfi + t̄

Ē

v̄

e

mi
E∂vfi

= βiν̄iet̄
N

x̄
νieni(Mi − fi) + ν̄iet̄

N

x̄
νiene(Mie − fi).

In a similar way we obtain for electrons

∂tfe +
t̄v̄

x̄
v∂xfe − t̄

Ē

v̄

e

me
E∂vfe

=
βe
ε
ν̄iet̄

N

x̄
νiene (Me − fe) +

1

ε
ν̄iet̄

N

x̄
νieni (Mei − fe) ,
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and the non-dimensionalized Maxwell distributions given by

Mi(x, v, t) =
ni√
2πTi

exp

(
−|v − ui|

2

2Ti

)
,

Me(x, v, t) =
ne√
2πTe

(
me

mi

) 1
2

exp

(
−|v − ue|

2

2Te

me

mi

)
,

Mie(x, v, t) =
ni√

2πTie
exp

(
−|v − uie|

2

2Tie

)
,

Mei(x, v, t) =
ne√
2πTei

(
me

mi

) 1
2

exp

(
−|v − uei|

2

2Tei

me

mi

)
,

(6.23)

with the non-dimensionalized macroscopic quantities

uie = δui + (1− δ)ue, (6.24)

Tie = αTi + (1− α)Te +
γ

mi
|ui − ue|2, (6.25)

uei = (1− mi

me
ε(1− δ))ue +

mi

me
ε(1− δ)ui, (6.26)

Tei = [(1− ε(1− α))Te + ε(1− α)Ti]

+ (ε(1− δ)(mi

me
ε(δ − 1) + δ + 1)− ε γ

mi
)|ui − ue|2.

(6.27)

Defining dimensionless parameters

A =
t̄v̄

x̄
, Bi = t̄

Ē

v̄

e

mi
, Be = t̄

Ē

v̄

e

me
,

1

εi
= βiν̄iet̄

N

x̄
,

1

ε̃i
= ν̄iet̄

N

x̄
,

1

εe
=
βe
ε
ν̄iet̄

N

x̄
,

1

ε̃e
=

1

ε
ν̄iet̄

N

x̄
,

(6.28)

we get

∂tfi +A∂xvfi +BiE∂vfi =
1

εi
νieni(Mi − fi) +

1

ε̃i
νiene(Mie − fi),

∂tfe +Av∂xfe −BeE∂vfe =
1

εe
νiene(Me − fe) +

1

ε̃e
νieni(Mei − fe).

(6.29)

In addition, we want to write the moments (6.5) in non-dimensionalized form. We
can compute this in a similar way as for (6.6) and obtain after dropping the primes∫

fkdv = nk,

∫
vfkdv = nkuk, k = i, e,

1

ni

∫
|v − ui|2fidv = Ti,

me

mi

1

ne

∫
|v − ue|2fedv = Te.

(6.30)

For the non-dimensionalized form of the Maxwell equation (6.9) we obtain after
dropping the primes

Ē

eN
∂xE = ρ.
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We assume that Ē
eN = 1. This means that we assume that the electric field is of the

order of the number of particles times the elementary charge.

Remark 6.1.1. We described in section 5.2.1 that according to [11] there are the
following relationships between the collision frequencies in the case of ions and
electrons

νee = νei =

√
mi

me
νii =

mi

me
νie,

which means

ε =
me

mi
, βe = 1, βi =

√
mi

me
.

6.1.4 Micro-macro decomposition for the two species model

In this section, we derive the micro-macro model which is equivalent to the kinetic
equations (6.29). First, we take the dimensionless equations (6.29) and choose
A = Be = mi

me
Bi = 1. The choice A = 1 means v̄ = x̄

t̄ . The choice Be = 1 means
that the reciprocal unit time scales are given by the cyclotron frequency of electrons
in the Ē

v̄ − field, that is 1
t̄ = Ē

v̄
e
me

. Now, we propose to adapt the micro-macro
decomposition presented in [12] and [28]. It is used for numerical methods to solve
Boltzmann like equations for mixtures to capture the right compressible Navier-Stokes
dynamics at small Knudsen numbers. The idea is to write each distribution function
as the sum of its own equilibrium part verifying a fluid equation and a remainder of
kinetic type. We decompose fi and fe as

fi = Mi + gii, fe = Me + gee. (6.31)

Let us introduce m(v) :=

 1
v
|v|2

 and the notation 〈·〉 :=
∫
· dv. Since fi and

Mi, and fe and Me, have the same moments: 〈m(v)fi〉 = 〈m(v)Mi〉 and 〈m(v)fe〉 =
〈m(v)Me〉, the moments of gii and gee are zero and thus

〈m(v)gii〉 = 〈m(v)gee〉 = 0. (6.32)

With this decomposition we get from equation (6.29) for ions in dimensionless form

∂tMi + ∂tgii + v∂xMi + v∂xgii +
me

mi
E∂vMi +

me

mi
E∂vgii

= − 1

εi
νienigii +

1

ε̃i
νiene(Mie −Mi − gii),

(6.33)

and a similar equation for electrons.

Now we consider the Hilbert spaces L2
Mk

= {φ such that φM−
1
2

k ∈ L2(dv)},
k = i, e, with the weighted inner product 〈φψM−1

k 〉 of φ and ψ. We consider
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the subspace Nk =span {Mk, vMk, |v|2Mk}, k = i, e. Let ΠMk
be the orthogonal

projection in L2
Mk

on this subspace Nk. This subspace has the orthonormal basis

B̃k = { 1
√
nk
Mk,

(v − uk)√
Tkmi/mk

1
√
nk
Mk, (

|v − uk|2

2Tkmi/mk
− 1

2
)

1
√
nk
Mk} =: {bk1 , bk2 , bk3}.

Using this orthonormal basis of Nk, one finds for any function φ ∈ L2
Mk

the following
expression of ΠMk

(φ)

ΠMk
(φ) =

3∑
n=1

(φ, bkn)bkn =
1

nk
[〈φ〉+

(v − uk) · 〈(v − uk)φ〉
Tkmi/mk

+ (
|v − uk|2

2Tkmi/mk
− 1

2
)2〈( |v − uk|

2

2Tkmi/mk
− 1

2
)φ〉]Mk. (6.34)

This orthogonal projection ΠMk
(φ) has some elementary properties.

Lemma 6.1.4 (Properties of ΠMk
). We have, for k = i, e,

(1−ΠMk
)(Mk) = (1−ΠMk

)(∂tMk) = 0,

ΠMk
(gkk) = ΠMk

(∂tgkk) = (1−ΠMk
)(E∂vMk) = 0,

and

ΠMi
(Mie) = (1 +

(v − ui)(uie − ui)
Ti

+ (
|v − ui|2

2Ti
− 1

2
)(
Tie
Ti

+
|uie − ui|2

Ti
− 1))Mi, (6.35)

ΠMe(Mei) = (1 +
(v − ue)(uei − ue)

Temi/me

+ (
|v − ue|2

2Temi/me
− 1

2
)(
Tei
Te

+
|uei − ue|2

Temi/me
− 1))Me. (6.36)

Proof. The proof of the first five equalities is analogue to the one species case and is
given in [12]. For the convenience of the reader we will repeat it here.

• Since ΠMk
(Mk) = Mk, we have (1−ΠMk

)(Mk) = 0.

• Since

∂tMk =

(
∂tnk
nk

+
v − uk
Tk

mk
mi

· ∂tuk +

(
|v − uk|2

2(Tk
mk
mi

)2
− 3

2Tk
mk
mi

)
∂tTk

mk

mi

)
Mk,

(6.37)

∂tMk is a linear combination of Mk, vMk, |v|2Mk. So ∂tMk ∈ Nk and therefore
ΠMk

(∂tMk) = ∂tMk.
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• With the definition of gkk and the fact that fk and Mk have the same moments
we get

〈m(v)gkk〉 = 〈m(v)(fk −Mk)〉 = 0.

Therefore gkk is orthogonal to Nk, so ΠMk
(gkk) = 0.

• ∂tgkk is also orthogonal to Nk since

〈m(v)∂tgkk〉 = ∂t〈m(v)gkk〉 = 0.

• As in the case of ∂tMk, ∇v · (EMk) is a linear combination of Mk, vMk, |v|2Mk.

The last two equalities (6.35) and (6.36) are obtained using the explicit expression
of ΠMk

given by (6.34) by direct computations.

Now we apply the orthogonal projection 1−ΠMi
to (6.33), use lemma 6.1.4 and

obtain

∂tgii + (1−ΠMi
)(v∂xMi) + (1−ΠMi

)(v∂xgii) + (1−ΠMi
)(
me

mi
E∂vgii)

=
1

ε̃i
νiene(Mie −ΠMi

(Mie))− (
1

εi
νieni +

1

ε̃i
νiene)gii.

Again with lemma 6.1.4 we replace ΠMi
(Mie) by its explicit expression.

∂tgii + (1−ΠMi
)(v∂xMi) + (1−ΠMi

)(v∂xgii) + (1−ΠMi
)(
me

mi
E∂vgii)

=
1

ε̃i
νiene(Mie − (1 +

(v − ui)(uie − ui)
Ti

+(
|v − ui|2

2Ti
− 1

2
)(
Tie
Ti

+
1

Ti
|uie − ui|2 − 1))Mi)− (

1

εi
νieni +

1

ε̃i
νiene)gii.

We take the moments of equation (6.33) and get

∂t〈m(v)Mi〉+ ∂t〈m(v)gii〉+ ∂x〈m(v)(vMi)〉+ ∂x〈m(v)vgii〉

+ 〈m(v)
me

mi
E∂vMi〉+ 〈m(v)

me

mi
E∂vgii〉

= − 1

εi
νieni〈m(v)gii〉+

1

ε̃i
νiene(〈m(v)(Mie −Mi)〉 − 〈m(v)gii〉).

With (6.32), we get

∂t〈m(v)Mi〉+ ∂x〈m(v)vMi〉+ ∂x〈m(v)vgii〉+ 〈m(v)
me

mi
E∂vMi〉

+〈m(v)
me

mi
E∂vgii〉 =

1

ε̃i
νiene(〈m(v)(Mie −Mi)〉).
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Using integration by parts and the fact that the moments of gii are zero we get that
the term 〈m(v)E∂vgii〉 vanishes and so we have

∂t〈m(v)Mi〉+ ∂x〈m(v)vMi〉+ ∂x〈m(v)vgii〉+ 〈m(v)
me

mi
E∂vMi〉

=
1

ε̃i
νiene(〈m(v)(Mie −Mi)〉).

So altogether we get the following coupled system for the ions

∂tgii+(1−ΠMi )(v∂xMi)+(1−ΠMi )(v∂xgii)+(1−ΠMi )(
me
mi

E∂vgii)

= 1
ε̃i
νiene(Mie−(1+

(v−ui)(uie−ui)
Ti

+(
|v−ui|

2

2Ti
− 1

2 )(
Tie
Ti

+ 1
Ti
|uie−ui|2−1))Mi)

−( 1
εi
νieni+

1
ε̃i
νiene)gii,

(6.38)

∂t〈m(v)Mi〉+ ∂x〈m(v)vMi〉+ ∂x〈m(v)vgii〉+ 〈m(v)
me

mi
E∂vMi〉

=
1

ε̃i
νiene(〈m(v)(Mie −Mi)〉).

(6.39)

In a similar way, we get an analogous coupled system for the electrons which is
coupled with the system of the ions

∂tgee + (1−ΠMe
)(v∂xMe) + (1−ΠMe

)(v∂xgee)− (1−ΠMe
)(E∂vgee)

=
1

ε̃e
νieni(Mei − (1 +

(v − ue)(uei − ue)
Te

me

mi

+ (
|v − ue|2

2Te

me

mi
− 1

2
)(
Tei
Te

+
me

miTe
|uei − ue|2 − 1))Me)

− (
1

εe
νiene +

1

ε̃e
νieni)gee,

(6.40)

∂t〈m(v)Me〉+ ∂x〈m(v)vMe〉+ ∂x〈m(v)vgee〉 − 〈m(v)E∂vMe〉

=
1

ε̃e
νieni(〈m(v)(Mei −Me)〉).

(6.41)

Now we have obtained a system of two microscopic equations (6.38), (6.40)
and two macroscopic equations (6.39), (6.41). One can show that this system is an
equivalent formulation of the BGK equations for ions and electrons. This is analogous
to what is done in [28].

6.2 Theoretical results to check the quality of numerical
experiments

In this section we want to present two theoretical results which we can compare
with numerical experiments. The first theoretical result are convergence rates to
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equilibrium in the space-homogeneous case. Since in the case of gas mixtures
we expect that the distribution functions relax towards equilibrium distributions
which are Maxwell distributions with a common equilibrium and temperature (see
theorem 2.1.6), we proved convergence rates of the two velocities ui and ue and the
two temperatures Ti and Te to a common value and convergence rates of the two
distribution functions to Maxwell distributions. This is presented in section 6.2.1.
This is also presented in [29] by Crestetto, Klingenberg and Pirner. In addition in [29],
we present numerical experiments using the micro-macro decomposition and verify
these convergence rates numerically. The numerical discretization used in [28] uses
a particle approximation for the kinetic part, the fluid part being always discretized
by standard Finite Volume schemes. Furthermore, we study in [29] the influence on
the speed of convergence under different choices of the collision frequencies.

The second theoretical result is an extension of the theory of Landau damping
from one species presented in [84] to two species. This is done in section 6.2.2.

6.2.1 Space homogeneous case without electric field

We first propose to consider our model in the space-homogeneous case, without elec-
tric field, where we can show an estimate of the decay rate of ||fk(t)−Mk(t)||L1(dv),
|ui(t)− ue(t)|2 and |Ti(t)− Te(t)|2. In the space-homogeneous case, without electric
field, the BGK model for mixtures (6.6) simplifies to

∂tfi =
1

εi
νieni(Mi − fi) +

1

ε̃i
νiene(Mie − fi),

∂tfe =
1

εe
νiene(Me − fe) +

1

ε̃e
νieni(Mei − fe),

(6.42)

and its micro-macro reformulation simplifies to

∂tgii =
1

ε̃i
νiene(Mie − (1 +

(v − ui)(uie − ui)
Ti

+ (
|v − ui|2

2Ti
− 1

2
)(
Tie
Ti

+
1

Ti
|uie − ui|2 − 1))Mi)− (

1

εi
νieni +

1

ε̃i
νiene)gii,

∂t〈mMi〉 =
1

ε̃i
νiene(〈m(Mie −Mi)〉),

(6.43)

∂tgee =
1

ε̃e
νiene(Mei − (1 +

(v − ue)(uei − ue)
Te

me

mi

+ (
|v − ue|2

2Te

me

mi
− 1

2
)(
Tei
Te

+
me

mi

1

Te
|uei − ue|2 − 1))Me)

− (
1

εe
νiene +

1

ε̃e
νieni)gee,

∂t〈mMe〉 =
1

ε̃e
νieni(〈m(Mei −Me)〉).

(6.44)
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Convergence rate to Maxwell distributions

We denote by H(f) =
∫
f ln fdv the entropy of a function f and by H(f |g) =∫

f ln f
g dv the relative entropy of f and g.

Theorem 6.2.1. In the space homogeneous case without electric field (6.42), we have
the following convergence rate of the distribution functions fi and fe:

||fk −Mk||L1(dv) ≤ 4e−
1
2Ct[H(f0

i |M0
i ) +H(f0

e |M0
e )]

1
2 , k = i, e,

where C is a constant.

Proof. We consider the entropy production of species i defined by

Di(fi, fe) = −
∫

1

εi
νieni ln fi (Mi − fi)dv −

∫
1

ε̃i
νiene ln fi (Mie − fi)dv.

According to the proof of lemma 1.3.12 the function h(x) := x lnx − x satisfies
h′(x) = lnx, so we can deduce

Di(fi, fe) = −
∫

1

εi
νienih

′(fi)(Mi − fi)dv −
∫

1

ε̃i
νieneh

′(fi)(Mie − fi)dv.

Moreover, we have that h is convex according to lemma 1.3.12 and we obtain

Di(fi, fe) ≥
∫

1

εi
νieni(h(fi)− h(Mi))dv +

∫
1

ε̃i
νiene(h(fi)− h(Mie))dv

=
1

εi
νieni(H(fi)−H(Mi)) +

1

ε̃i
νiene(H(fi)−H(Mie)).

(6.45)

In the same way we get a similar expression for De(fe, fi) just exchanging the indices
i and e.
If we use that lnMi is a linear combination of 1, v and |v|2, we see that

∫
(Mi −

fi) lnMidv = 0 since fi and Mi have the same moments. With this we can compute
that

H(fi|Mi) = H(fi)−H(Mi). (6.46)

Moreover, according to (2.17), we see that

1

ε̃i
νieneH(Mie) +

1

ε̃e
νieniH(Mei) ≤

1

ε̃i
νieneH(Mi) +

1

ε̃e
νieniH(Me). (6.47)

With (6.46) and (6.47), we can deduce from (6.45) that

Di(fi, fe) +De(fe, fi) ≥
(

1

εi
νieni +

1

ε̃i
νiene

)
H(fi|Mi)

+

(
1

εe
νiene +

1

ε̃e
νieni

)
H(fe|Me).

(6.48)

113



6 Application to plasmas

We want to relate the time derivative of the relative entropies

d

dt
(H(fi|Mi) +H(fe|Me)) =

d

dt

[∫
fi ln

fi
Mi

dv +

∫
fe ln

fe
Me

dv

]
,

to the entropy production in the following. First, we use product rule and obtain

d

dt
(H(fi|Mi) +H(fe|Me)) =

∫
∂tfi

(
ln

fi
Mi

+ 1

)
dv −

∫
fi
Mi

∂tMidv

+

∫
∂tfe

(
ln

fe
Me

+ 1

)
dv −

∫
fe
Me

∂tMedv.

(6.49)

By using the explicit expression of ∂tMi given by (6.37), we can compute that∫
fk
∂tMk

Mk
dv = ∂tnk = 0, k = i, e,

since nk is constant in the space-homogeneous case. In the first term on the right-hand
side of (6.49), we insert ∂tfi and ∂tfe from equation (6.42) and obtain

d

dt
(H(fi|Mi) +H(fe|Me)) =

∫ (
1

εi
νieni(Mi − fi) +

1

ε̃i
νiene(Mie − fi)

)
ln fidv

+

∫ (
1

εe
νiene(Me − fe) +

1

ε̃e
νieni(Mei − fe)

)
ln fedv.

Indeed, the terms with lnMi and lnMe vanish since lnMi and lnMe are a linear
combination of 1, v and |v|2 and our model satisfies the conservation of the number of
particles, total momentum and total energy (see section 2.1.5). All in all, we obtain

d

dt
(H(fi|Mi) +H(fe|Me)) = −(Di(fi, fe) +De(fe, fi)). (6.50)

Using (6.48) we obtain

d

dt
(H(fi|Mi) +H(fe|Me))

≤ −
[(

1

εi
νieni +

1

ε̃i
νiene

)
H(fi|Mi) +

(
1

εe
νiene +

1

ε̃e
νieni

)
H(fe|Me)

]
≤ −min{ 1

εi
νieni +

1

ε̃i
νiene,

1

εe
νiene +

1

ε̃e
νieni}(H(fi|Mi) +H(fe|Me)).

Define C := min{ 1
εi
νieni + 1

ε̃i
νiene,

1
εe
νiene + 1

ε̃e
νieni}, then we can deduce an

exponential decay with Gronwall’s inequality

H(fk|Mk) ≤ H(fi|Mi) +H(fe|Me)

≤ e−Ct[H(f0
i |M0

i ) +H(f0
e |M0

e )], k = i, e.

With the Ciszar-Kullback inequality (see appendix A.1) we get

||fk −Mk||L1(dv) ≤ ||fi −Mi||L1(dv) + ||fe −Me||L1(dv)

≤ 4e−
1
2Ct[H(f0

i |M0
i ) +H(f0

e |M0
e )]

1
2 .
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Convergence rates for the velocities and temperatures

In this section we prove convergence rates for the velocities ui, ue and for the
temperatures Ti, Te, respectively, to a common value in the space-homogeneous case.
We start with the decay of |ui − ue|2.

Theorem 6.2.2. Suppose that νie is constant in time. In the space-homogeneous case
without electric field (6.42), we have the following decay rate of the velocities

|ui(t)− ue(t)|2 = e
−2νie(1−δ)

(
1
ε̃i
ne+

ε
ε̃e

mi
me

ni
)
t|ui(0)− ue(0)|2.

Proof. If we multiply the equations (6.42) by v and integrate with respect to v, we
obtain by using (6.24), (6.26) and (6.28)

∂t(niui) =
1

ε̃i
νieneni(uie − ui) =

1

ε̃i
νieneni(1− δ)(ue − ui),

∂t(neue) =
1

ε̃e
νieneni(uei − ue) =

1

ε̃e
νieneni

mi

me
ε(1− δ)(ui − ue).

Since in the space-homogeneous case the densities ni and ne are constant, we actually
have

∂tui =
1

ε̃i
νiene(1− δ)(ue − ui), ∂tue =

1

ε̃e
νieni

mi

me
ε(1− δ)(ui − ue).

With this we get

1

2

d

dt
|ui − ue|2 = (ui − ue)∂t(ui − ue)

= (ui − ue)νie(1− δ)
(

1

ε̃i
ne +

ε

ε̃e

mi

me
ni

)
(ue − ui)

= −2νie(1− δ)
(

1

ε̃i
ne +

ε

ε̃e

mi

me
ni

)
|ui − ue|2.

From this, we deduce

|ui(t)− ue(t)|2 = e
−2νie(1−δ)

(
1
ε̃i
ne+

ε
ε̃e

mi
me

ni
)
t|ui(0)− ue(0)|2.

We continue with a decay rate of |Ti(t)− Te(t)|.

Theorem 6.2.3. Suppose νie is constant in time. In the space-homogeneous case without
electric field (6.42), we have the following decay rate of the temperatures

|Ti(t)− Te(t)| ≤ e−C1t

[
|Ti(0)− Te(0)|+ |C2|

C1 − C3
(e(C1−C3)t − 1)|ui(0)− ue(0)|2

]
,
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where the constants are defined by

C1 = (1− α)νie

(
1

ε̃i
ne +

ε

ε̃e
ni

)
,

C2 = νie

(
1

ε̃i
ne

(
(1− δ)2 +

γ

mi

)
− ε

ε̃e
ni

(
1− δ2 − γ

mi

))
,

C3 = 2νie(1− δ)
(

1

ε̃i
ne +

ε

ε̃e

mi

me
ni

)
.

Proof. If we multiply the first equation of (6.42) by 1
ni
|v − ui|2 and integrate with

respect to v, we obtain∫
1

ni
|v − ui|2∂tfidv =

1

ε̃i
νiene

1

ni

∫
|v − ui|2(Mie − fi)dv. (6.51)

Indeed, the first relaxation term vanishes since Mi and fi have the same temperature.
We simplify the left-hand side of (6.51) to∫

1

ni
|v − ui|2∂tfidv =

∫
1

ni
∂t(|v − ui|2fi)dv + 2

∫
1

ni
fi(v − ui) · ∂tuidv

= ∂tTi,

and the right-hand side of (6.51) simplifies to

1

ε̃i
νiene

1

ni

∫
|v − ui|2(Mie − fi)dv =

1

ε̃i
νiene(Tie + |uie − ui|2 − Ti)

=
1

ε̃i
νiene

(
(1− α)(Te − Ti) +

(
(1− δ)2 +

γ

mi

)
|ue − ui|2

)
.

For the second species we multiply the second equation of (6.42) by me
mi

1
ne
|v − ue|2.

For the left-hand side, we obtain by using (6.30)∫
me

mi

1

ne
|v − ue|2∂tfedv = ∂tTe

and for the right-hand side using (6.26), (6.27) and (6.28)

1

ε̃e
νieni

me

mi

1

ne

∫
|v − ue|2(Mei − fe)dv =

1

ε̃e
νieni(Tei +

me

mi
|uei − ue|2 − Te)

=
1

ε̃e
νieni

[
ε(1− α)(Ti − Te)

+

(
ε(1− δ)

(
mi

me
ε(δ − 1) + δ + 1

)
− ε γ

mi
+ ε2(1− δ)2 mi

me

)
|ui − ue|2

]
=

1

ε̃e
νieni

(
ε(1− α)(Ti − Te) + ε(1− δ2 − γ

mi
)|ui − ue|2

)
.
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So, we obtain

∂tTi =
1

ε̃i
νiene

(
(1− α)(Te − Ti) +

(
(1− δ)2 +

γ

mi

)
|ue − ui|2

)
,

∂tTe =
1

ε̃e
νieni

(
ε(1− α)(Ti − Te) + ε

(
1− δ2 − γ

mi

)
|ui − ue|2

)
.

We deduce

∂t(Ti − Te) = −(1− α)νie

(
1

ε̃i
ne +

ε

ε̃e
ni

)
(Ti − Te)

+ νie

(
1

ε̃i
ne

(
(1− δ)2 +

γ

mi

)
− ε

ε̃e
ni

(
1− δ2 − γ

mi

))
|ui − ue|2,

or with the constants defined in this theorem

∂t(Ti − Te) = −C1(Ti − Te) + C2|ui − ue|2.

Duhamel’s formula gives

Ti(t)− Te(t) = e−C1t(Ti(0)− Te(0)) + C2e
−C1t

∫ t

0

eC1s|ui(s)− ue(s)|2ds.

So we have the following inequality

|Ti(t)− Te(t)| ≤ e−C1t|Ti(0)− Te(0)|+ |C2|e−C1t

∫ t

0

eC1s|ui(s)− ue(s)|2ds,

and by using theorem 6.2.2, we have

|Ti(t)− Te(t)| ≤ e−C1t|Ti(0)− Te(0)|+ |C2|e−C1t

∫ t

0

eC1se−C3sds|ui(0)− ue(0)|2,

|Ti(t)− Te(t)| ≤ e−C1t

(
|Ti(0)− Te(0)|+ |C2|

C1 − C3
(e(C1−C3)t − 1)|ui(0)− ue(0)|2

)
.

Numerical simulation

In this section we sketch the idea of the numerical approximation of the two-species
micro-macro system (6.38),(6.39),(6.40) and (6.41). Following the idea of [28], we
propose to use a particle method to discretize both microscopic equations (6.38) and
(6.40). The macroscopic equations (6.39) and (6.41) are solved by a classical Finite
Volume method (see for example [85]).

In this section, we only present the main idea of the method and refer to [28] for
the details.

For the microscopic parts, we use a Particle-In-Cell method (see for example
[17]): we approach gii and gee by a set of Npi and Npe particles, with position xik(t)
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and xek(t), velocity vik(t) and vek(t) and weight ωik(t) and ωek(t), k = 1, . . . , Npi
and k = 1, . . . , Npe , respectively. Then we assume that the microscopic distribution
functions have the following expression:

gii(x, v, t) =

Npi∑
k=1

ωik(t)δ(x− xik(t))δ(v − vik(t)),

gee(x, v, t) =

Npe∑
k=1

ωek(t)δ(x− xek(t))δ(v − vek(t)),

(6.52)

with δ the Dirac mass. Moreover, we have the following relations:

ωik(t) = gii(xik(t), vik(t), t)
LxLv
Npi

, k = 1, . . . , Npi ,

ωek(t) = gee(xek(t), vek(t), t)
LxLv
Npe

, k = 1, . . . , Npe ,

(6.53)

where Lx ∈ R and Lv ∈ R denote the length of the domain in the space and the
length in the domain in velocity direction, respectively.

The method consists now in splitting the transport and the source parts of (6.38)
and (6.40). Let us consider (6.38), the steps being the same for (6.40). The transport
part

∂tgii + v∂xgii + E∂vgii = 0, (6.54)

is solved in the following way. We evolve the positions xik and the velocities vik in
(6.52) and (6.53) in the expression of gii by solving the characteristic equations

dxik
dt

(t) = vik(t),
dvik
dt

(t) = E(xik(t), t), ∀ k = 1, . . . , Npi .

The source part

∂tgii =− (1−ΠMi)(v∂xMi) + ΠMi(v∂xgii) + ΠMi(E∂vgii)

+
1

ε̃i
νiene(Mie − (1 +

(v − ui)(uie − ui)
Ti

+ (
|v − ui|2

2Ti
− 1

2
)(
Tie
Ti

+
1

Ti
|uie − ui|2 − 1))Mi)− (

1

εi
νieni +

1

ε̃i
νiene)gii,

(6.55)

is solved by evolving the weight ωik(t). Let us denote by S(x, v, t) the right-hand side
such that ∂tgii = S(x, v, t). If we solve (6.53) for gii, compute ∂tgii of the obtained
equation and use that ∂tgii = S, we obtain

∂tωik = S(xik , vik , t)
Npi
LxLp

.

118



6.2 Theoretical results to check the quality of numerical experiments

The strategy is the same as in paragraph 4.1.2 of [28], where only one species is
considered (and so there are no coupling terms). The supplementary terms coming
from the coupling of both species are treated in the source part as the other source
terms. They do not add any particular difficulty.

Furthermore, we have to ensure that the moments of gii and gee remain zero
at each time step at the discrete level. This is not guaranteed at the discrete level,
since 〈m(v)v∂xgkk〉 6= 0. This is called projection step where the moments of gkk
are matched to zero. Details are given in subsection 4.2 of [28]. The idea is the
following. We construct at each time step a function hkk(x, v) which has the same
macroscopic quantities as the discrete function gn+1

kk (x, v) at the time step n+ 1 by
making the ansatz

hkk(x, v) = λkk(x) ·m(v)Mk(x, v)

where Mk is the Maxwell distribution of fn+1
k . The motivation for this ansatz is that

we want to have a function which lies in Nk. Then we solve the system

〈m(v)hkk(x, v)〉|Xi = 〈m(v)gn+1
kk 〉|Xi

on each position Xi on the uniform grid (Xi)i, for the function λkk(x) ∈ R3. This is
possible since we have three unknowns and three constraints. Then we correct gn+1

kk

by

gn+1,new
kk = gn+1

kk − hkk

at each time step.
Finally, the macroscopic equations (6.39) and (6.41) are discretized on a grid in

space and solved by a classical Finite Volume method. For the one species case, this
is detailed in subsection 4.3 of [28]. The electric field is discretized on the same grid
and computed at each time step by solving the Maxwell equation (6.9) with a Finite
Difference method.

6.2.2 Landau damping for two species

The next theoretical result which can be used to compare the analytic behaviour of the
solution with numerical results is the Landau damping. It is a qualitative behaviour
of the Vlasov-Poisson equation. For one species this phenomena was developed by
Landau in [63]. A more rigorous treatment of the derivation of Landau has been
done by Villani in [84]. The derivation in this section is an extension of the result
presented in [84] by Villani for one species to a mixture of ions and electrons.

The 1D Vlasov model for a mixture of two species

We consider a plasma consisting of electrons denoted by the index e and one species
of ions denoted by the index i. The state of the two species will be described by two
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distribution functions fe(x, v, t), fi(x, v, t) ≥ 0, x ∈ [0, L], L > 0, v ∈ R, t > 0. We
describe the time evolution by a system of Vlasov equations

∂tfe + v∂xfe −
e

me
E[fe, fi]∂vfe = 0,

∂tfi + v∂xfi +
e

mi
E[fe, fi]∂vfi = 0,

(6.56)

with corresponding initial data. This set of equations describes the collision-less
regime of equation (6.6) with the same notation as in section 6.1.3. Again we expect
from physics that the electric field E(x, t) can be written as a gradient of a potential
φ(x, t). Together with the Maxwell equation ∂xE(x, t) = ρ(x, t), where

ρ(x, t) = e

∫ ∞
−∞

(fi(x, v, t)− fe(x, v, t))dv (6.57)

describes the charge density, we get that φ solves a Poisson equation.
So now, we assume that E is of the form

E[fe, fi] = −
∫
∂xW (x− y)ρ(y, t)dy

= −
∫
∂xW (x− y) e

∫ ∞
−∞

(fi(y, v, t)− fe(y, v, t))dvdy

= −
∫ ∫ ∞

−∞
∂xW (x− y) e (fi(y, v, t)− fe(y, v, t))dvdy,

(6.58)

where W is a Green’s function to the Poisson equation on [0, L]. The existence of the
function W is argued in [84] and [75].

The advantage of the system (6.56) is the following property discovered by Lan-
dau. When one linearises the Vlasov equations around a homogeneous equilibrium,
it is possible to analyse the stability and the asymptotic behaviour for the linearised
equation. This analysis is carried out for the two species case in the following section
in a more rigorous way inspired by the one species case done by Villani in [84]. We
begin with the existence of equilibrium solutions in section 6.2.2. In section 6.2.2
we perform the linearisation around an equilibrium distribution. In section 6.2.2 we
want to give a physical motivation of the properties we want to derive analytically
from the linearised equations in section 6.2.2 to section 6.2.2.

Existence of equilibria

We want to find equilibrium solutions to (6.56).

Definition 6.2.1 (Equilibrium solution). We call a pair of functions (fequi , feque ) an
equilibrium solution to (6.56) if and only if (fequi , feque ) satisfy (6.56) and ∂tf

equ
i =

∂tf
equ
e = 0.

We are able to prove that there exist an equilibrium solution to (6.56).

120



6.2 Theoretical results to check the quality of numerical experiments

Theorem 6.2.4 (Existence of equilibrium solutions). There exists at most one equilib-
rium solution to (6.56).

Proof. We prove it by giving an example. Any pair of distributions (fi(x, v), fe(x, v))
= (fequi (v), feque (v)) defines an equilibrium solution. Obviously the distributions are
independent of t. So the only thing we have to prove is that they are a solution to
(6.56). Since they are also independent of x, we have v∂xf

equ
i = v∂xf

equ
e = 0 for

every v ∈ R. Therefore the charge density ρequ given by (6.57) associated to fequi

and feque is constant in x. So the corresponding forces vanish since∫
∂xW (x− y)ρequ(y, t)dy =

∫
W (x− y)∂yρ

equ(y, t)dy = 0.

Linearisation of the Vlasov model

We assume that we are near an equilibrium, that means

fe(x, v, t) = feque (v) + he(x, v, t),

fi(x, v, t) = fequi (v) + hi(x, v, t),
(6.59)

where he, hi are small deviations. The meaning of "small" will be specified in a
moment. We assume that the equilibria are independent of x and they satisfy the
condition of quasi-neutrality∫ ∞

−∞
fequi (v)dv =

∫ ∞
−∞

feque (v)dv, (6.60)

which means that in equilibrium the resulting charge ρ is equal to zero. Such an
equilibrium exists according to theorem 6.2.4. Inserting ansatz (6.59) into (6.56)
and (6.58) and neglecting quadratic terms in hi and he, respectively, we obtain

∂the + v∂xhe −
e

me
E[he, hi]∂vfe = 0,

∂thi + v∂xhi +
e

mi
E[he, hi]∂vfi = 0,

(6.61)

where

E[he, hi] = −
∫ ∫ ∞

−∞
∂xW (x− y)[hi(x, v, t)− he(x, v, t)]dvdy

= −
∫ ∫ ∞

−∞
∂xW (x− y)h(x, v, t)dvdy.

(6.62)

The quantity h is defined as h := hi − he. We now want to show the following. If
a plasma is disturbed from equilibrium as in (6.59), we expect from physics that
the plasma will relax back to equilibrium for t→∞. So the particles will be forced
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to go to the equilibrium configuration. Since we expect the particles to be inert by
Newton’s first law, we expect them to carry out oscillations. So we expect to see that
the densities are oscillating in time and this oscillation is possibly damped depending
on the physical configuration. We want to show that this property is contained in the
model (6.61) and find criteria when these oscillations are damped. Since the electric
field depends directly via (6.62) on the densities and the electric field is related to
the electric energy Wel via Wel = 1

2E
2, we also expect to observe a damping by

considering the electric energy or E2.

Physical motivation of Landau damping in plasmas

In this section we want to give a physical motivation of Landau damping, before
we start to derive its qualitative behaviour in the following sections. We consider
an electrically quasi-neutral plasma according to (6.60) in equilibrium consisting
of positively charged ions and negatively charged electrons. Now we assume that
we disturb the position of the electrons or the ions away from the equilibrium
configuration. Then we expect to have a force which forces the electrons back to
the equilibrium configuration. Similar as in the case of a spring, this can lead to
an oscillation around the equilibrium configuration. This oscillation can be damped
or not. Since an oscillation around the equilibrium configuration has to do with a
change of the position of the particles, we expect that the oscillations are reflected
somehow in the corresponding density.

Methods of characteristics

In this section and the following ones we want to find criteria for damping and show
the property of damping in an analytical way from equations (6.56). Similar as in
[84] in step 1, we apply the methods of characteristics on (6.61) and obtain

he(x, v, t) = he,in(x− vt, v) +
e

me

∫ t

0

E[hi, he](τ, x− v(t− τ))∂vf
equ
e (v)dτ,

hi(x, v, t) = hi,in(x− vt, v)− e

mi

∫ t

0

E[hi, he](τ, x− v(t− τ))∂vf
equ
i (v)dτ.

(6.63)

This is similar to the definition of a mild solution treating the force term as the
inhomogeneity of the transport equation, see section 4.1.1.

Fourier transform of the distribution functions

Similar as in [84] in step 2, we take the Fourier transform (see appendix A.2) in
both x and v of both equations (6.63) and do the substitutions y = x − vt in the
part with the initial data and y = x− v(t− τ) in the term with the time integration
(source term). We use that the Fourier transform of the source terms separates into
the product of the Fourier transform in x of the force term E[hi, he] and the Fourier
transform in v of the derivative of the equilibrium function ∂vf

equ
k , k = 1, 2. Then

we use that the Fourier transform of a convolution leads to a product of two Fourier
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transforms. We get rid of the derivatives doing integration by parts in v. All in all, we
obtain

h̃e(k, η, t) = h̃e,in(k, η + kt)

− e

me
4π2Ŵ (k)

∫ t

0

ρ̂h(k, τ)f̃eque (η + k(t− τ))k · [η + k(t− τ)]dτ,

h̃i(k, η, t) = h̃i,in(k, η + kt)

+
e

mi
4π2Ŵ (k)

∫ t

0

ρ̂h(k, τ)f̃equi (η + k(t− τ))k · [η + k(t− τ)]dτ,

(6.64)

where k and η denote the new variables after the transformations and ρh = ρhii − ρhee ,
ρhii =

∫
hidv, ρhee =

∫
hedv. The notation ∼ denotes the Fourier transform in x and v

whereas ∧ denotes the Fourier transform only in the x variable.

Fourier transform of the densities

If we set η = 0, we obtain the Fourier transform of the densities. Since the exponential
in the Fourier transform in v reduces to 1 and it remains the integration with respect
to v over the function hk, k = e, i which is the density.

ρ̂hee (k, t) = he,in(k, kt) +

∫ t

0

K0
e (t− τ, k)[ρ̂hii − ρ̂

he
e ](k, τ)dτ,

ρ̂hii (k, t) = hi,in(k, kt) +

∫ t

0

K0
i (t− τ, k)[ρ̂hii − ρ̂

he
e ](k, τ)dτ,

(6.65)

where
K0
e (t− τ, k) = − e

me
4π2Ŵ (k)feque (kt)|k|2t,

K0
i (t− τ, k) =

e

mi
4π2Ŵ (k)fequi (kt)|k|2t.

Convergence rates of the densities

Assume that the equilibrium is a global one which means fequi = feque . It exists
according to the proof of theorem 6.2.4. Then

K0
e (t− τ, k) = −mi

me
K0
i (t− τ, k) =: −K(t− τ, k).

Then we have two equations of the form

φe(t) = ae(t)−
∫ t

0

K(t− τ)[φi(τ)− φe(τ)]dτ,

φi(t) = ai(t) +
me

mi

∫ t

0

K(t− τ)[φi(τ)− φe(τ)]dτ.

(6.66)
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Theorem 6.2.5. Let K = K(t) be a kernel defined for t ≥ 0, such that

(i) |K(t)| ≤ C0e
−2πλ0t for a constant λ0 > 0.

(ii) |(1 + me
mi

)KL(ξ) − 1| ≥ κ > 0 for 0 ≤ Re(ξ) ≤ Λ where the index L denotes
the complex Laplace transform. For the definition of the Laplace transform see
appendix A.2. Note, that property (i) in this theorem corresponds to the property
(ii) in the definition of the Laplace transform as a required property such that the
Laplace transform is well-defined.

Let further ai = ai(t), ae = ae(t) satisfy

(iii) |memi ae(t) + ai(t)| ≤ α+e
−2πλ+t,

(iv) |ai(t)− ae(t)| ≤ α−e−2πλ−t

and let φi, φe solve (6.66). Then for any λ′ < min(λ+, λ−,Λ, λ0)

|φe(t)| ≤ Cee−2πλ′t,

|φi(t)| ≤ Cie−2πλ′t,

where Ci, Ce are constants depending on λ+, λ−,Λ, λ0, κ, C0, λ
′.

Proof. Let us write Φe(t) = e2πλ′tφe(t),Φi(t) = e2πλ′tφi(t), Ae(t) = e2πλ′tae(t),
Ai(t) = e2πλ′tai(t). Now similar as in the proof of lemma 3.5 in [84], we multi-
ply (6.66) by e2πλ′t and obtain

Φe(t) = Ae(t)−
∫ t

0

K(t− τ)e2πλ′(t−τ)[Φi(τ)− Φe(τ)]dτ,

Φi(t) = Ai(t) +
me

mi

∫ t

0

K(t− τ)e2πλ′(t−τ)[Φi(τ)− Φe(τ)]dτ.

(6.67)

The functions Φe,Φi, Ae, Ai and K are defined only for t ≥ 0. We extend the domain
of these functions for negative times by setting them equal to zero for t < 0. Then
take the Fourier transform in the time variable. This leads to

Φ̂e(ω) = Âe(ω)−
∫ ∞
−∞

e−iωt
∫ t

0

K(t− τ)e2πλ′(t−τ)[Φi(τ)− Φe(τ)]dτdt

= Âe(ω)−
∫ ∞
−∞

∫ ∞
−∞

K(s)e2πλ′se−iω(s+τ)[Φi(τ)− Φe(τ)dτds

= Âe(ω)−KL(λ′ + iω)[Φ̂i(ω)− Φ̂e(ω)],

Φ̂i(ω) = Âi(ω) +
me

mi
KL(λ′ + iω)[Φ̂i(ω)− Φ̂e(ω)],

where KL denotes the complex Laplace transform, see appendix A.2. Subtract the
first equation from the second one. Then

Φ̂i(ω)− Φ̂e(ω) = Âi(ω)− Âe(ω) +

(
me

mi
+ 1

)
KL(λ′ + iω)[Φ̂i(ω)− Φ̂e(ω)],

124



6.2 Theoretical results to check the quality of numerical experiments

which is equivalent to

Φ̂i(ω)− Φ̂e(ω) =
Âi(ω)− Âe(ω)

1− (memi + 1)KL(λ′ + iω)
,

since we assumed (memi + 1)KL(λ′ + iω) 6= 1. Actually, we assumed that |(1 +
me
mi

)KL(ξ)− 1| ≥ κ > 0 and so we obtain

||Φ̂i − Φ̂e||L2(ω) ≤
||Âi − Âe||L2(ω)

κ
.

Therefore by Plancherel’s identity (see appendix A.2) and the decay assumption (iv),
we get

||Φi − Φe||L2(t) ≤
||Ai −Ae||L2(t)

κ
≤ α−

κ
√

4π(λ− − λ′)
,

since the integral
∫∞

0
e−2πλ−te2πλ′tdt is equal to 1√

4π(λ−−λ′)
. We plug this into the

following system equivalent to (6.67)
me
mi

Φe(t)+Φi(t)=
me
mi

Ae(t)+Ai(t),

Φi(t)−Φe(t)=Ai(t)−Ae(t)+
(
me
mi

+1
) ∫ t

0
K(t−τ)e2πλ

′(t−τ)[Φi(τ)−Φe(τ)]dτ,
(6.68)

and obtain by using the estimates (iii) and (iv), Hölder inequality and estimate (ii)

||me

mi
Φe + Φi||L∞(t) ≤ ||

me

mi
Ae +Ai||L∞(t) ≤ α+,

||Φi − Φe||L∞(t) ≤ ||Ai −Ae||L∞(t) + (
me

mi
+ 1)||(Ke2πλ′t) ∗ [Φi − Φe]||L∞(dt)

≤ α− +

(
me

mi
+ 1

)
||Ke2πλ′t||L2(dt)||Φi − Φe||L2(dt)

≤ α− +

(
me

mi
+ 1

)
C0√

4π(λ0 − λ′)
α−

κ
√

4π(λ− − λ′)
.

(6.69)

From this we obtain the estimates

||Φi||L∞(t) = || 1

1 + me
mi

(
me

mi
Φe + Φi) +

1

1 + me
mi

me

mi
(Φi − Φe)||L∞(t)

≤ 1

1 + me
mi

||me

mi
Φe + Φi||L∞(t) +

1

1 + me
mi

me

mi
||Φi − Φe||L∞(t)

≤ 1

1 + me
mi

α+ +
1

1 + me
mi

me

mi

[
α− +

(
me

mi
+ 1

)
C0√

4π(λ0 − λ′)
α−

κ
√

4π(λ− − λ′)

]
,

||Φe||L∞(t) = || 1

1 + me
mi

(
me

mi
Φe + Φi

)
− 1

1 + me
mi

(Φi − Φe)||L∞(t)

≤ 1

1 + me
mi

α+ +
1

1 + me
mi

[
α− + (

me

mi
+ 1)

C0√
4π(λ0 − λ′)

α−

κ
√

4π(λ− − λ′)

]
.
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6 Application to plasmas

We also have to check if the Fourier transforms of Φe,Φi exist and if they are in L2(R).
We replace λ′ by a parameter α varying from −ε to λ′. By the integrability of K and
Gronwall’s lemma, memi Φe + Φi and Φi −Φe are bounded as a function of t. Therefore
Φe and Φi are bounded as a function of t. So φi(k, t)e

−ε|k|t , φe(k, t)e−ε|k|t are
integrable for any ε > 0 and continuous as ε→ 0. Then assumption (ii) guarantees
that the bounds are uniform in the strip 0 ≤ Re(ξ) ≤ λ′.

From (6.69) we see that the difference of the densities is damped which results
in a damping of the electric field and the electric energy what we wanted to show. In
[29] Crestetto, Klingenberg and Pirner also numerically observed a damped electric
field in the non-collision-less regime, see section 6 in [29].

The Landau-Penrose stability criterion

In order to have damping, we have to ensure that

|(1 +
me

mi
)KL(ξ)− 1| ≥ κ > 0 for 0 ≤ Re(ξ) ≤ Λ.

[84] computes that

(K)L((λ+ iω)|k|) = Ŵ (k)

∫
(fequ)′(v)

v − w + iλ
dv,

using integration by parts and the fact that we have∫ ∞
0

e−2iπ|k|tve2π(λ+iw)|k|t|k|dvdt =
1

2iπ

1

v − w + iλ
,

assuming (fequ)′ decays fast enough at infinity such that the integral exists. Then
[84] considers the limit λ→ 0+ (and extends the statement later to a strip 0 ≤ λ ≤ Λ
by continuity arguments). In the limit [84] obtains

Z(k, ω) := Ŵ (k)[

∫
(fequ)′(v)− (fequ)′(ω)

v − ω
dv − iπ(fequ)′(ω)].

So the aim is to find a condition such that Z does not approach 1. If the imaginary
part of Z stays away from zero, then Z does not approach the real value 1. So Z only
approaches zero, if (fequ)′(v) approaches zero in the imaginary part. But when the
imaginary part will approach zero or equivalently if ω approaches zero of (fequ)′, the
real part has to stay away from one. This leads to the Penrose stability criterion

∀ω∈R, (fequ)′(ω) = 0 ⇒ Ŵ (k)

∫
(fequ)′(v)

v − ω
dv < 1.

In our case there is a factor (1 + me
mi

) in front of KL, so we get

∀ω∈R, (fequ)′(ω) = 0 ⇒ (1 +
me

mi
)Ŵ (k)

∫
(fequ)′(v)

v − ω
dv < 1.
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6.2 Theoretical results to check the quality of numerical experiments

Example 6.2.1. In the case of Coulomb interactions, we have Ŵ (k) = 1
|k|2 . If fequ

has only one maximum at the origin meaning ω = 0, and is non-decreasing for
v > 0 meaning (fequ)′(v) < 0 for v > 0, and non-increasing for v > 0 meaning
(fequ)′(v) > 0 for v > 0, then obviously∫

(fequ)′(v)

v
dv < 0,

and so the Penrose stability criterion trivially holds true.

Example 6.2.2. If fequ is a small perturbation of the function described in the
previous example, so that it has a slight secondary bump, then the Penrose criterion
will still be satisfied. If the bump becomes larger, there will be instability.
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Chapter 7

Extension to an ES-BGK model for a multi-
component gas mixture

In the previous chapters we concerned ourselves with a kinetic description of gases
using the BGK approximation. It has the advantage of being less complicated than
the full Boltzmann equation and at the same time fulfils the main properties of
the Boltzmann equation namely conservation of mass, momentum and energy and
the H-theorem with its entropy inequality and Maxwell distributions in equilibrium.
However, the drawback of the BGK approximation is its incapability of reproducing
the correct Boltzmann hydrodynamic regime in the asymptotic continuum limit to the
Navier-Stokes equations. Therefore, a modified version called ES-BGK approximation
was suggested by Holway in the case of one species [54]. The H-theorem of this
model then was proven in [2] and existence and uniqueness of solutions in [87].

Here we shall focus on gas mixtures modelled via an ES-BGK approach. We saw
that in the literature there is a BGK model for gas mixtures suggested by Andries,
Aoki and Perthame in [1] which contains only one collision term on the right-hand
side. One extension of this model to an ES-BGK model for gas mixtures is given
by Brull in [21]. His extension is based on an entropy minimization problem and
leads to a correct Prandtl number in the Navier-Stokes equations. Another extension
is given by Groppi, Monica and Spiga in [48]. They noticed that in the case of a
gas mixture, besides the Prandtl number, the diffusion coefficient and the thermal
diffusion parameter need to be fixed, too. With the proposed model in [48], they
are merely able to fix the diffusion parameter and the Prandtl number but not the
thermal diffusion parameter.

In this chapter we are interested in an extension of the BGK model to an ES-
BGK model for gas mixtures presented in chapter 2 which just like the Boltzmann
equation for gas mixtures contains a sum of collision terms on the right-hand side.
The advantage of the model presented in chapter 2 is that we have free parameters.
With these free parameters, we are possibly able to determine all macroscopic
physical constants like diffusion parameter, Prandtl number and the thermal diffusion
parameter when taking the limit to the Navier-Stokes equations.

The outline of this chapter is as follows: in section 7.1 we want to motivate the
ES-BGK model for one species. In section 7.2 we want to briefly repeat the main
issues of the BGK model for gas mixtures in chapter 2. In section 7.3, we want
to introduce the macroscopic equations and quantities which Groppi, Monica and
Spiga [48] expect in the case of gas mixtures. In section 7.4 the Chapman-Enskog
expansion for the BGK model for mixtures presented in chapter 2 is performed and
the differences in the case of the ES-BGK extension for gas mixtures is illustrated in
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7 Extension to an ES-BGK model for a multi-component gas mixture

order to see that we are able to capture the right hydrodynamic regime. In section
7.5 we introduce the Brunn-Minkowski inequality which will be needed to prove
the H-theorem of ES-BGK models. In section 7.6, we suggest extensions to ES-BGK
models for mixtures and prove the corresponding H-theorems.

7.1 Motivation of the model for one species

For one species the BGK equation is given by

∂tf + v · ∇xf = νn(M(f)− f),

with the distribution function f(x, v, t) > 0 and the collision frequency ν(x, t) > 0
where x ∈ R3, v ∈ R3 are the phase space variables and t ≥ 0 the time. The Maxwell
distribution M is given by

M =
n√

2π Tm

3 exp

(
−|v − u|

2

2T/m

)
,

with mass m and the moments∫
f(v)

 1
v

m|v − u|2

 dv =:

 n
nu

3nT

 .

We now replace the Maxwell distribution M(f) by another relaxation operator and
consider the new equation

∂tf + v · ∇xf = νn(G(f)− f),

where G(f) is no longer a Maxwell distribution. Instead of the scalar temperature in
the Maxwell distribution we take a linear combination of the temperature and the
pressure tensor P = m

∫
(v − u)⊗ (v − u)dv in the following way

G(f) =
n√

det(2π Tm )
e−

1
2 (v−u)·( Tm )−1·(v−u), (7.1)

where
T = (1− µ̃)T1+ µ̃

P
n
, with − 1

2
≤ µ̃ ≤ 1,

being a free parameter. We see that for µ̃ = 0 we regain the BGK model because then
T −1 = 1

T 1 and det(2π Tm1) = (2π Tm )3 in three space dimensions.
For writing T −1 we have to ensure that T is invertible. However, the next lemma

and theorem provide that the matrix T is invertible for all parameters ν̃ in the range
[− 1

2 , 1].

Lemma 7.1.1. Assume that f > 0. Then P
n has strictly positive eigenvalues.
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7.1 Motivation of the model for one species

We skip the proof since we will show it later in the two species case. The one
species case is a special case of the two species case by taking one species which does
not interact with the other one. Then the corresponding collision frequency is zero or
the density of the second species is zero.

Theorem 7.1.2. Assume that f > 0 and − 1
2 ≤ µ̃ ≤ 1. Then T has strictly positive

eigenvalues. Especially T is invertible.

The proof is given in [2]. We skip the prove since we also show it in the two
species case later.

7.1.1 Minimization of the entropy

Another motivation of the ES-BGK model comes from a minimization problem for the
entropy. In section 1.4.1 we motivated the BGK model coming from a minimization
problem of the entropy. We considered a model of the form

∂tf + v · ∇xf = νn(G(f)− f), (7.2)

for a function G(f) which we determined as the minimizer to the problem

S(n, u, T ) = min
g∈χ

∫
H(g)dv, (7.3)

where H(g) is given by H(g) = g ln g and χ is the following set

χ = {g ≥ 0, (1 + |v|2)g ∈ L1(dv),

∫
gdv = n,

∫
vgdv = nu,

∫
v ⊗ vgdv = n(u⊗ u+

T

m
1)}.

The set χ was motivated in the following way. We expect that during the relaxation
process the density n, the momentum nu and the energy 1

2n(m|u|2 + T ) should be
conserved, so the solution to (7.3) should have the same density, momentum and
energy as f . We observe that we also determined the off-diagonal terms of

∫
v⊗vgdv.

The physical meaning of the choice∫
v ⊗ vgdv = nu⊗ u+ n

T

m
1,

was the following. If we compute the integral m
∫
v ⊗ vfdv we get mnu ⊗ u + P.

Therefore the restriction on g ∈ χ means that we expect that in equilibrium the tensor
P becomes diagonal, which means that we have no friction in the equilibrium. Now
we also allow for off-diagonal terms and choose a different set χnew of the following
form

χnew = {g ≥ 0, (1+ |v|2)g ∈ L1(dv),

∫
gdv = n,

∫
vgdv = nu,

∫
v⊗vgdv = nu⊗u+

n

m
T },

with T given by

T = (1− µ̃)T1 + µ̃
P
n
, −1

2
≤ µ̃ ≤ 1.
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7 Extension to an ES-BGK model for a multi-component gas mixture

Theorem 7.1.3. The unique minimizer to

min
g∈χnew

∫
H(g)dv,

is the function G given by (7.1).

Proof. The proof is analogous to the proof of theorem 1.4.1 for the set χ.

7.1.2 Chapman-Enskog expansion

The essential motivation to extend the BGK model to an ES-BGK model is the
following. The BGK model has the disadvantage that if one performs the Chapman-
Enskog expansion, the obtained transport coefficients, which are the viscosity and
the heat conductivity, obtained in the Navier-Stokes level are not satisfactory, as their
ratio, the Prandtl number is equal to 1. The meaning of the Prandtl number is the
following. The viscosity of a fluid describes its resistance to shearing flows. Imagine
parallel plates with a fluid in between. When we move the top plate the fluid region
next to the top plate will move with the same speed due to friction. The fluid next
to the bottom plate has speed zero since the plate on the bottom does not move.
The speed of the fluid decreases from the bottom to the top (Couette flow [38]). In
physical experiments, one can measure that the force which is needed to move the
top plate is proportional to the area of the plate and to the reciprocal of the distance
of the two plates. The proportionality constant is given by the viscosity. In most of
the fluids the viscosity has a temperature dependence via eC/T with a constant C > 0.
The heat conductivity describes the ability of conducting heat. So the reciprocal of
the heat conductivity has the meaning of a heat resistance. It increases with the
temperature. Since the Prandtl number Pr is the ratio of the viscosity and the heat
conductivity, it compares the momentum transfer with the heat transfer in the gas or
equivalently the resistance to shearing with the resistance of heat transfer. For most
gases Pr is approximately constant. For most gases one of the two effects dominates,
so for most gases, we observe Pr 6= 1. The physical background described here is
given in a lot of introductory physics or chemistry books for example in [52].

Chapman-Enskog expansion of the BGK equation

We write the BKG equation in dimensionless form

∂tfε̃ + v · ∇xfε̃ =
1

ε̃
(M(fε̃)− fε̃). (7.4)

Now we expand fε̃ into a series in the parameter ε̃

fε̃ = f0 + ε̃f1 + ε̃2f2 + · · · . (7.5)

Now consider (7.4) in the limit ε̃ → 0. In this limit 1
ε̃ (M(fε̃) − fε̃) must remain

finite, because the left-hand side of (7.4) remains finite, too. Therefore Q(fε̃) has to
converge to zero as ε̃ → 0. This means that in the limit the remaining distribution
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7.1 Motivation of the model for one species

function f0, has to coincide with its Maxwell distribution, so f0 = M(f0). Due to
conservation of the number of particles, conservation of momentum and conservation
of energy, in this limit ε̃→ 0, the distribution function needs to have the macroscopic
quantities n, u and T as fε̃. This means that f0 is a Maxwell distribution with the
same density, mean velocity and temperature as fε̃, so f0 = M(fε̃). Therefore the
density, mean velocity and temperature of the other components are zero

0 = m

∫
fkdv = m

∫
vfkdv =

m

2

∫
|v|2fkdv for k ≥ 1.

Consider the macroscopic equations by taking moments from theorem 2.1.9 for one
species

∂tn+∇x · (nu) = 0,

m∂t(nu) +m∇x · (nu⊗ u) +∇x · P = 0,

∂t

(
3

2
nT +

1

2
mn|u|2

)
+∇x ·Q = 0,

(7.6)

where P = m
∫
f(v−u)⊗(v−u)dv denotes the pressure tensor andQ = m

2

∫
f |v|2vdv

the heat flux. Since f0 already has the same number density, mean velocity and
temperature as fε̃, higher order terms in the expansion of fε̃ only influence P and Q.
From (7.4) we get

fε̃ = M(fε̃)− ε̃(∂tfε̃ + v · ∇xfε̃). (7.7)

We insert our expansion (7.5) for fε̃ with f0 = M(fε̃) into the right-hand side and
obtain

fε̃ = M(fε̃)− ε̃(∂tM(fε̃) + v · ∇xM(fε̃)) +O(ε̃2).

Then

P = m

∫
fε̃(v − u)⊗ (v − u)dv

= nT1− ε̃m
(∫

∂tM(fε̃)(v − u)⊗ (v − u)dv +

∫
v · ∇xM(fε̃)(v − u)⊗ (v − u)dv

)
+O(ε̃2)

= nT1− ε̃T
(
∇xu+ (∇xu)T − 2

3
(∇x · u)1

)
+O(ε̃2).

The last equality follows by replacing the time derivative by the zeroth order of the
equations (7.6) and then computing the Gaussian integrals. In a similar way, we can
compute

Q = −ε̃T∇x
(

5

2

T

m

)
+O(ε̃2).

The term of order 1 in ε̃ in front of the brackets in the pressure tensor is expected
from physics to be the viscosity µ(T ) := ε̃T , and the corresponding term in the heat
flux κ(T ) := ε̃T is expected to be the heat conductivity. In this case the ratio µ

κ , the
Prandtl number, is one which is a contradiction to experiments.

133



7 Extension to an ES-BGK model for a multi-component gas mixture

Chapman-Enskog expansion of the ES-BGK equation

Consider µ̃ < 1. We start with the non-dimensional ES-BGK equation

∂tfε̃ + v · ∇xfε̃ =
1

ε̃
(G(fε̃)− fε̃). (7.8)

We expand fε̃ into a series in ε̃:

fε̃ = f0 + ε̃f1 + ε̃2f2 + · · · . (7.9)

Then the equilibrium distribution is still a Maxwell distribution. This is argued in the
following. Suppose we are in equilibrium, then

fε̃ = G(fε̃). (7.10)

If we take the moment of the pressure tensor of equation (7.10), we obtain

P
n

= T = (1− µ̃)T1 + µ̃
P
n
,

which is equivalent to
P
n

= T1,

for µ̃ < 1. This means that in equilibrium the tensor is diagonal and the function
G(fε̃) reduces to a Maxwell distribution. Since the equilibrium function of fε̃ is
M(fε̃), we get in the limit ε̃→ 0 that f0 = M(f0). Since in this case f0 has to have
the density n, the mean velocity u and the temperature T , we have f0 = M(fε̃). So
f0 has the same density, mean velocity and temperature as fε̃ and higher orders of fε̃
have zero density, mean velocity and temperatures. Combining this with (7.8) and
(7.9), we get

fε̃ = G(fε̃)− ε̃(∂tM(fε̃) + v · ∇xM(fε̃)) +O(ε̃2).

So now, if we compute the pressure tensor of this expression, we obtain

P = n(1−µ̃)T1+µ̃P+ε̃nT∇x·
(
m

∫
(∂tM(fε̃) + v · ∇xM(fε̃))(v − u)⊗ (v − u)dv

)
+O(ε̃2),

which is equivalent to

P
n

= T1+ ε̃
1

1− µ̃
T∇x ·

(
m

∫
(∂tM(fε̃) + v · ∇xM(fε̃))(v − u)⊗ (v − u)dv

)
+O(ε̃2)

and similarly

Q = −ε̃T∇x
(

5

2

T

m

)
+O(ε̃2).

So in this case the viscosity, which is the coefficient in the term of order 1 in ε̃ in
front of ∇x, is ε̃ T

1−µ̃ , whereas the heat conductivity, which is the parameter in front
of ∇x in Q, is still ε̃T , so the Prandtl number, which is the ratio, is 1

1−µ̃ . Now, we
can choose µ̃ such that it fits to experiments. Note that it seems that the viscosity
coefficient has not the right dependence on the temperature. One ansatz to correct
this, is to treat the collision frequency as a free parameter which can be chosen such
that the viscosity has the correct physical value, see [48].
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7.1.3 The theory of persistence of the velocity

Later, in section 7.6 we want to propose possible extensions to an ES-BGK model for
gas mixtures. One of these extensions is based on the following physical theory. It
is called theory of the persistence of velocities. It is described in [55, 56, 53, 26].
The theory of persistence of velocities after a collision is a physical phenomenon
developed by Jeans in [55]. It states the following. After a collision with another
particle the velocity of a given molecule will, on the average, still retain a component
in the direction of its original motion. This is explained in the following. Jeans
computes a mean speed c̄′1(c1, c2) after collision of a particle with mass m1 which has
the speed c1 before collision with another particle 2 via

c̄′1(c1, c2) =

∫
S2 c
′
1ν̃12(c2, ω)dω∫

S2 ν̃12(c2, ω)dω
. (7.11)

The index 2 denotes the other particle with mass m2 and a fixed but arbitrary value
of the second absolute value of the velocity c2. The average is taken over all possible
deflection angles ω ∈ S2 and ν̃12(c2, ω) denotes the probability of a collision.

The case of equal masses

In the case of hard balls and equal masses one can compute the integral in (7.11).
For details of this computation see [55, 56, 26]. We obtain

c̄′1(c1, c2) =


15c41+c42

10c1(3c21+c22)
c1 > c2,

c1(5c22+3c21)

5(3c22+c21)
c1 < c2.

Then the expression c̄′1(c1,c2)
c1

is called the measure of persistence of the velocity of

the first particle. We observe that c̄
′
1(c1,c2)
c1

depends only on the ratio κ := c1
c2

, namely

c̄′1
c1

(κ) =

{
15κ4+1

10κ2(3κ2+1) κ > 1,
3κ2+5

5(κ2+3) κ < 1.

We observe the following estimate:

Lemma 7.1.4. c̄′1
c1

satisfies the following estimate

1

4
≤ c̄′1
c1

(κ) ≤ 1,

for all κ ∈ R+.

Proof. First, let κ > 1. Then c̄′1
c1

(κ) is bounded from above by a number smaller or
equal to 1 since

15κ4 + 1

10κ2(3κ2 + 1)
≤ 15κ4 + 1

30κ4
=

1

2
+

1

30

1

κ4
≤ 1

2
+

1

30
,
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7 Extension to an ES-BGK model for a multi-component gas mixture

and from below by 1
3 since

15κ4 + 1

10κ2(3κ2 + 1)
≥ 15κ4 + 1

10κ2(3κ2 + κ2)
=

15κ4

40κ4
=

3

8
≥ 1

3
.

Next, let κ < 1, then we have

3κ2 + 5

5(κ2 + 3)
≤ 3κ2 + 5

15
≤ 1,

and
3κ2 + 5

5(κ2 + 3)
≥ 5

20
=

1

4
.

We observe that for any κ we expect a positive persistence of the velocity before
collision which is larger than 1

4 .

Remark 7.1.1. In the case of different masses we obtain from the integral in (7.11)
the expression

c̄′1
c1

=
m1 −m2

m1 +m2
+

2m2

m1 +m2

(
c̄′1
c1

)
e

,

where (
c̄′1
c1

)e denotes the persistence when the masses are equal. So we obtain the
following inequality

c̄′1
c1
≥
m1 − 1

2m2

m1 +m2
,

if we use lemma 7.1.4 for the persistence when the masses are equal. So in the case
of different masses we observe that it is dependent on the masses, whether we have
a persistence or not.

Consequences for the choice of the ES-BGK operator

The choice of the tensor T = (1 − µ̃)T1 + µ̃P can be motivated with the theory of
persistence of the velocities as follows. This was done by Holway in [54] who is the
physicist who invented the ES-BGK model. The theory of persistence of the velocity
argues that in the post-collisional speed there is a memory of the pre-collisional speed
of the particle. In the single species BGK equation this yields the choice of

T = (1− µ̃)T1 + µ̃P, −1

2
≤ µ̃ ≤ 1,

the tensor chosen in the well-known ES-BGK model, where µ̃P preserves the memory
of the off-equilibrium content of the pre-collisional velocity. This can be rewritten as

T = T1 + µ̃ traceless[P],

where traceless[P] denotes the traceless part of P. So the off-equilibrium part is
contained in µ̃ traceless[P].
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7.2 The BGK approximation for gas mixtures

7.2 The BGK approximation for gas mixtures

In this section we want to briefly repeat the BGK model for a mixture of two species
such that it is possible to read this chapter independently. For simplicity we consider
in the following a mixture composed of two different species, but the discussion can
be generalized to multi-species mixtures. Thus, our kinetic model has two distribution
functions f1(x, v, t) > 0 and f2(x, v, t) > 0 where x ∈ Λ ⊂ R3 and v ∈ R3 are the
phase space variables and t ≥ 0 the time.

Furthermore, for any f1, f2 : Λ × R3 × R+
0 → R, Λ ⊂ R3 with (1 + |v|2)f1, (1 +

|v|2)f2 ∈ L1(dv), f1, f2 ≥ 0 we relate the distribution functions to macroscopic
quantities by mean-values of fk, k = 1, 2

∫
fk(v)


1
v

mk|v − uk|2
mk(v − uk)⊗ (v − uk)

 dv =:


nk
nkuk
3nkTk
Pk

 , k = 1, 2, (7.12)

where nk is the number density, uk the mean velocity, Tk the temperature and Pk
the pressure tensor of species k, k = 1, 2. Note that in this section we shall write Tk
instead of kBTk, where kB is the Boltzmann constant.

Then we consider the following BGK model for gas mixtures presented in chapter
2:

∂tf1 + v · ∇xf1 = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂tf2 + v · ∇xf2 = ν22n2(M2 − f2) + ν21n1(M21 − f2),
(7.13)

with the Maxwell distributions

Mk(x, v, t) =
nk√

2π Tk
mk

3 exp

(
−|v − uk|

2

2 Tk
mk

)
, k = 1, 2,

Mkj(x, v, t) =
nkj√

2π
Tkj
mk

3 exp

(
−|v − ukj |

2

2
Tkj
mk

)
, k, j = 1, 2, k 6= j,

(7.14)

where ν11n1 and ν22n2 are the collision frequencies of the particles of each species
with itself, while ν12 and ν21 are related to interspecies collisions. To be flexible
in choosing the relationship between the collision frequencies, we now assume the
relationship

ν12 = εν21, 0 < ε ≤ 1, (7.15)

ν11 = β1ν12, ν22 = β2ν21, β1, β2 > 0. (7.16)

If we assume that

n12 = n1 and n21 = n2, (7.17)
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7 Extension to an ES-BGK model for a multi-component gas mixture

u12 = δu1 + (1− δ)u2, δ ∈ R, (7.18)

and

T12 = αT1 + (1− α)T2 + γ|u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0, (7.19)

we have conservation of the number of particles, of total momentum and total energy
provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1), (7.20)

and

T21 =

[
1

3
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1− α)T1 + (1− ε(1− α))T2,

(7.21)

see theorem 2.1.1, theorem 2.1.2 and theorem 2.1.3.
We see that without using an ES-BGK extension, we already have three free

parameters in (7.18) and (7.19) in order to possibly match coefficients like the Fick
constant or the heat conductivity in the Navier-Stokes equations. In order to ensure
the positivity of all temperatures, we need to impose restrictions on δ and γ,

0 ≤ γ ≤ m1

3
(1− δ)

[
(1 +

m1

m2
ε)δ + 1− m1

m2
ε

]
, (7.22)

and
m1

m2
ε− 1

1 + m1

m2
ε
≤ δ ≤ 1, (7.23)

see theorem 2.1.4 in chapter 2. This summarizes our kinetic model (7.13) of two
species that contains three free parameters. More details can be found in chapter 2.

7.3 Coefficients on the Navier-Stokes level

In section 7.1.2 our aim was to fix the right values of the viscosity coefficient and
the heat conductivity in the case of one species. In this section we want to present
what parameters we want to fix in the two species case. This is described by Groppi,
Monica and Spiga in [48]. They expect the following expansion of the velocities
according to Fick’s law

uεs = ū−
2∑
r=1

Dsr∇xnr, s = 1, 2,
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7.4 Chapman-Enskog expansion for the mixture

with the four diffusion coefficients coupled with the three independent constraints

D12 = D21,

2∑
s=1

Dsrmsns = 0, r = 1, 2,

so the full Fick matrix is determined by only one of its entries. The physical meaning
of Fick’s law is the following. It relates the flux of the fluid to the density. It postulates
that the flux goes from regions of high densities to regions of low densities. In the
case of the pressure tensor, [48] expects the following expansion

P := P1 + P2 = (n1 + n2)T̄1− µ(∇xū+∇xūT −
2

3
∇x · ū1),

where µ denotes the viscosity coefficient of the gas mixture. In the case of the
derivation of the heat flux, they expect the following

Q̃ := Q̃1 + Q̃2 = −λ(m1 +m2)

2∑
s=1

ns
ms
∇xT̄ + C

2∑
s=1

ns(us − ū),

where Q̃k is Q̃k = mk

∫
(v − uk)|v − uk|2fkdv, k = 1, 2 and λ denotes the heat

conductivity and C the thermal diffusion parameter. The thermal diffusion parameter
indicates the rate of transfer of the heat of a fluid from hot regions to cold regions.

7.4 Chapman-Enskog expansion for the mixture

In this section we will partly perform the Chapman-Enskog expansion for the BGK
equation for mixtures (7.13) in order to see where the free parameters α, δ and γ will
show up at the Navier-Stokes level. This expansion is also presented by Klingenberg
and Pirner in [59].

7.4.1 Dimensionless form of the two species BGK model

In section 6.1.3 we derived the dimensionless form of (7.13) in the one dimensional
case in position and velocity. One can also carry out the non-dimensionalization in
the three dimensional case in the same way. One obtains

∂tf1 + v · ∇xf1 =
1

ε1
(M1 − f1) +

1

ε̃1
(M12 − f1),

∂tf2 + v · ∇xf2 =
1

ε2
(M2 − f2) +

1

ε̃2
(M21 − f2),

(7.24)

where
1

ε̃1
=

1

ε1

1

β1

n2

n1
,

1

ε̃2
=

1

ε1

1

β1

1

ε
,
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7 Extension to an ES-BGK model for a multi-component gas mixture

1

ε2
=

1

ε1

β2

β1ε

n2

n1
,

if we assume ν11 = β1ν12 and ν22 = β2ν21 and ν12 = εν21. The parameter ε1 coming
from the non-dimensionalization is given by ε1 = 1

β1ν̄12 t̄N/x̄
. Here, t̄ is a typical order

of magnitude of the time, x̄ a typical order of magnitude of the length, ν̄12 the typical
order of magnitude of the collision frequency and N the typical number of particles
in the volume x̄3. In the following, we assume that ε1 is small and consider the limit
ε1 → 0. The non-dimensionalized Maxwell distributions are given by

M1(x, v, t) =
n1

√
2πT1

3 exp

(
−|v − u1|2

2T1

)
,

M2(x, v, t) =
n2

√
2πT2

3

(
m2

m1

) 1
2

exp

(
−|v − u2|2

2T2

m2

m1

)
,

M12(x, v, t) =
n1

√
2πT12

3 exp

(
−|v − u12|2

2T12

)
,

M21(x, v, t) =
n2

√
2πT21

3

(
m2

m1

) 1
2

exp

(
−|v − u21|2

2T21

m2

m1

)
,

(7.25)

with the non-dimensionalized macroscopic quantities

u12 = δu1 + (1− δ)u2, (7.26)

T12 = αT1 + (1− α)T2 +
γ

m1
|u1 − u2|2, (7.27)

u21 = (1− m1

m2
ε(1− δ))u2 +

m1

m2
ε(1− δ)u1, (7.28)

T21 = [(1− ε(1− α))T2 + ε(1− α)T1]

+

(
1

3
ε(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− ε γ

m1

)
|u1 − u2|2.

(7.29)

The macroscopic quantities nk, uk and Tk in non-dimensionalized form are given by

nk =

∫
fkdv,

nkuk =

∫
vfkdv, k = 1, 2,

T1 =
1

3

1

n1

∫
|v − u1|2f1dv,

T2 =
1

3

m2

m1

1

n2

∫
|v − u2|2f2dv.

(7.30)
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7.4.2 Expansion of the distribution functions

Now, we want to do the Chapman-Enskog expansion presented in section 7.1.2 for
one species in the two species case. We now expand both f1 and f2 in terms of ε1

f1 = f0
1 + ε1f

1
1 + ε2

1f
2
1 + · · · ,

f2 = f0
2 + ε1f

1
2 + ε2

1f
2
2 + · · · .

From (7.24) we get in the limit ε1 → 0

f1 =
1

1 + 1
β1

(
M1 +

1

β1
M12

)
,

f2 =
1

1 + 1
β2

(
M2 +

1

β2
M21

)
,

from which we can deduce that both distribution functions are Maxwell distributions
with equal mean velocity and temperature (see theorem 2.1.8).

From (7.24) we get

f1 =
1

1
ε1

+ 1
ε̃1

(
1

ε1
M1 +

1

ε̃1
M12

)
− 1

1
ε1

+ 1
ε̃1

(∂tf1 + v · ∇xf1),

f2 =
1

1
ε2

+ 1
ε̃2

(
1

ε2
M2 +

1

ε̃2
M21

)
− 1

1
ε2

+ 1
ε̃2

(∂tf2 + v · ∇xf2).

(7.31)

The zeroth order terms of the expansion have the same number density as the
distribution functions itself so the number densities are independent of ε1. But
the velocities and temperatures do not coincide, since we expect a common value
in equilibrium, so they depend on ε1. This means the first term in the expansion

1
1
ε1

+ 1
ε̃1

( 1
ε1
M1 + 1

ε̃1
M12) is not the zeroth order in ε1 but also contains higher orders.

In the one species case we directly obtained that the zeroth order is given by M(f).
This helped a lot in the expansion since is was possible to insert M(f) as zeroth order
in (7.7). Since we are not able to explicitly specify the zeroth order here, we are not
able to do this. But we can find a linear combination of f1 and f2 such that the mean
velocity and the temperature coincide with the zeroth order of 1

1
ε1

+ 1
ε̃1

( 1
ε1
M1 + 1

ε̃1
M12)

which is similar to equation (7.5) in the one species case. This is done in the next
section.

7.4.3 Combination of distribution functions whose macroscopic quan-
tities correspond to the macroscopic quantities of the zeroth or-
der

We now want to find a linear combination of the distribution functions whose mean
velocity and temperature are independent of ε1.
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The zeroth order of f1 is contained in

1
1
ε1

+ 1
ε̃1

(
1

ε1
M1 +

1

ε̃1
M12

)
,

and the zeroth order of f2 is contained in

1
1
ε2

+ 1
ε̃2

(
1

ε2
M2 +

1

ε̃2
M21

)
.

So a combination of the distribution functions whose mean velocity and temperature
are of zeroth order is obtained if the mean velocity and the temperature of Af1 +
Bf2 are equal to the mean velocity and temperature of A

1
ε1

+ 1
ε̃1

( 1
ε1
M1 + 1

ε̃1
M12) +

B
1
ε2

+ 1
ε̃2

( 1
ε2
M2 + 1

ε̃2
M21). By taking moments we get conditions on A and B. From the

velocities we get

An1u1 +Bn2u2 =
A

1
ε1

+ 1
ε̃1

(
1

ε1
n1u1 +

1

ε̃1
n1u12

)
+

B
1
ε2

+ 1
ε̃2

(
1

ε2
n2u2 +

1

ε̃2
n2u21

)
=

A
1
ε1

+ 1
ε̃1

(
1

ε1
n1u1 +

1

ε̃1
n1δu1 +

1

ε̃1
n1(1− δ)u2

)
+

B
1
ε2

+ 1
ε̃2

(
1

ε2
n2u2 +

1

ε̃2
n2u2 −

1

ε̃2
n2
m1

m2
ε(1− δ)(u2 − u1)

)

=

[
A

1
ε1

+ 1
ε̃1

(
1

ε1
+

1

ε̃1
δ

)
n1 +

B
1
ε2

+ 1
ε̃2

1

ε̃2
n2
m1

m2
ε(1− δ)

]
u1

+

[
A

1
ε1

+ 1
ε̃1

(
1

ε̃1
(1− δ)n1 +

B
1
ε2

+ 1
ε̃2

((
1

ε2
+

1

ε̃2

)
n2 −

1

ε̃2
n2

)
m1

m2
ε(1− δ)

)]
u2.

A comparison of the coefficients in front of u1 and u2 leads to

A = B
ε̃1

ε̃2

m1

m2
ε
n2

n1

1
ε1

+ 1
ε̃1

1
ε2

+ 1
ε̃2

.

If we do the same with the temperatures, we will obtain the same result. We can
simplify this expression by using the relationships between ε1, ε2, ε̃1 and ε̃2. First we
get

ε̃1

ε̃2
=

1

ε2

n1

n2
,

and secondly

1
ε1

+ 1
ε̃1

1
ε2

+ 1
ε̃2

=
β1

n1

n2
+ 1

β2
n2

n1
+ 1

ε2.
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Multiplying the two expressions we get

β1
n1

n2
+ 1

β2
n2

n1
+ 1

n1

n2
.

So all in all we get the following simplification

A = B
m1

m2
ε
β1

n1

n2
+ 1

β2
n2

n1
+ 1

.

We choose B = 1 and A = m1

m2
ε
β1

n1
n2

+1

β2
n2
n1

+1
and obtain

m1

m2
ε
β1

n1

n2
+ 1

β2
n2

n1
+ 1

f1 + f2. (7.32)

So

m1

m2
ε
β1

n1

n2
+ 1

β2
n2

n1
+ 1

f1 + f2 = f̄0 + ε1f̄
1 + · · · , (7.33)

where f̄0 has the same density, velocity and temperature according to (7.30) as the
left hand-side of (7.33) and the moments of f̄k , k ≥ 1 are zero as in the one species
case. We can explicitly compute the macroscopic quantities of f̄0. This is done in the
next section.

7.4.4 Macroscopic quantities of the distribution f̄ 0

The density of f̄0 is given by

n̄0 =

∫
f̄0dv =

∫ (
m1

m2
ε
β1

n1

n2
+ 1

β2
n2

n1
+ 1

f1 + f2

)
dv =

m1

m2
ε
β1

n1

n2
+ 1

β2
n2

n1
+ 1

n1 + n2.

Therefore, the mean velocity is given by

ū0 =
1

n̄0

∫
f̄0vdv =

m1

m2
ε β1+1
β2

n2
n1

+1
n1u1 + n2u2

m1

m2
ε
β1

n1
n2

+1

β2+1 n1 + n2

,

and the energy is given by

1

2
n̄0|ū0|2 +

3

2
n̄0 T̄

0

m̄0
=

∫
f̄0 1

2
|v|2dv

=
1

2
An1|u1|2 +

1

2
n2|u2|2 +

3

2
n1AT1 +

3

2
n2T2

m1

m2
,

and solving this for T̄ 0

m̄0 leads to the temperature

T̄ 0

m̄0
=

1

3

An1n2

(An1 + n2)2
|u1 − u2|2 +

An1

An1 + n2
T1 +

n2

An1 + n2
T2
m1

m2
.
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7.4.5 Combination of the distribution functions whose moments are
zero

We observe that in section 7.4.3 we regained a property of the one species case. But
since we are in the two species case it is not enough to have one equation for the
sum of the two distribution functions. We need a second equation. Since we expect
that in equilibrium the mean velocities and the temperatures of the two distribution
functions are the same we know that the zeroth order of n2

n1
f1 − f2 has zero mean

velocity and the zeroth order of the combination n2

n1

m1

m2
f1 − f2 has zero temperature.

Therefore, we have

n2

n1
f1 − f2 = f̃0 + ε1f̃

1 + · · · , (7.34)

n2

n1

m1

m2
f1 − f2 =

˜̃
f0 + ε1

˜̃
f1 + · · · , (7.35)

where f̃0 has zero mean velocity and ˜̃
f0 has zero temperature.

Solving (7.33) and (7.34) for f1 and f2 leads to

f1 =
1

A+ n2

n1

(
f̄0 + f̃0

)
+ ε1

1

A+ n2

n1

(
f̄1 + f̃1

)
+ ε2

1

1

A+ n2

n1

(
f̄2 + f̃2

)
+O(ε3

1),

(7.36)

f2 =
1

n2

n1
+A

(
n2

n1
f̄0 −Af̃0

)
+ ε1

1
n2

n1
+A

(
n2

n1
f̄1 −Af̃1

)
+ ε2

1

1
n2

n1
+A

(
n2

n1
f̄2 −Af̃2

)
+O(ε3

1),

(7.37)

and solving (7.33) and (7.35) for f1 and f2 leads to

f1 =
1

A+ n2

n1

m1

m2

(
f̄0 +

˜̃
f0
)

+ ε1
1

A+ n2

n1

m1

m2

(
f̄1 +

˜̃
f1
)

+O(ε2
1), (7.38)

f2 =
1

n2

n1

m1

m2
+A

(
n2

n1

m1

m2
f̄0 −A ˜̃

f0

)
+ ε1

1
n2

n1

m1

m2
+A

(
n2

n1

m1

m2
f̄1 −A ˜̃

f1

)
+ε2

1

1
n2

n1

m1

m2
+A

(
n2

n1

m1

m2
f̄2 −A ˜̃

f2

)
+O(ε2

1).

(7.39)

So for ε1 → 0 we see from (7.36) and (7.37) that the order zero in ε1 are two
Maxwell distributions fM1 and fM2 with the common velocity

ū :=
1

An1 + n2
(An1u1 + n2u2),
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7.4 Chapman-Enskog expansion for the mixture

and from (7.38) and (7.39) that the zeroth order are two Maxwell distributions fM1
and fM2 with the equal temperature

T̄ :=
1

An1 + n2
m1

m2

(An1 + n2)
T̄ 0

m̄0
.

Remember from the remark below (7.31) that fM1 has density n1 and fM2 has density
n2. Using this we can deduce from (7.31) by inserting the expansions of f1 and f2

that

f1 =
1

1
ε1

+ 1
ε̃1

(
1

ε1
M1 +

1

ε̃1
M12

)
− 1

1
ε1

+ 1
ε̃1

∫
(∂tf

M
1 + v · ∇xfM1 )dv +O(ε2

1),

f2 =
1

1
ε2

+ 1
ε̃2

(
1

ε2
M2 +

1

ε̃2
M21

)
− 1

1
ε2

+ 1
ε̃2

∫
(∂tf

M
2 + v · ∇xfM2 )dv +O(ε2

1).

(7.40)

7.4.6 Expansion of the velocities, the pressure tensors and the heat
fluxes

The exact macroscopic conservation equations that need to be closed in the two
species case compared to the one species case in (7.6) read as

∂tn1 +∇x · (n1u1) = 0,

∂tn2 +∇x · (n2u2) = 0,

∂t(n1u1) +∇x · P1 +∇x · (n1u1 ⊗ u1) =
1

ε̃1
(1− δ)(u2 − u1),

∂t(n2u2) +∇x · P2
m1

m2
+∇x · (n2u2 ⊗ u2) =

1

ε̃1
(1− δ)(u1 − u2),

∂t

(
1

2
n1|u1|2 +

3

2
n1T1

)
+∇x ·Q1

=
1

2

1

ε̃1
((δ2−1)|u1|2 +(1−δ)2|u2|2 +2δ(1−δ)u1 ·u2)+

3

2

1

ε̃1
((1−α)(T2−T1)+

γ

m1
|u1−u2|2),

∂t

(
1

2
n2|u2|2 +

3

2
n2T2

m1

m2

)
+∇x ·Q2

=
1

2

1

ε̃1
((δ2−1)|u1|2 +(1−δ)2|u2|2 +2δ(1−δ)u1 ·u2)+

3

2

1

ε̃1
((1−α)(T2−T1)+

γ

m1
|u1−u2|2),

according to theorem 2.1.9, where we need expressions for the velocities, pressure
tensors and heat fluxes

uk(x, t) =
1

nk(x, t)

∫
vfk(x, v, t)dv, (7.41)

Pk(x, t) =
mk

m1

∫
(v − uk(x, t))⊗ (v − uk(x, t))fk(x, v, t)dv, (7.42)

Qk(x, t) =
mk

m1

1

2

∫
|v|2vfk(x, v, t)dv, (7.43)
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7 Extension to an ES-BGK model for a multi-component gas mixture

for k = 1, 2. In the following we want to insert the expansions for fε11 and fε22 in
these three integrals in order to see if we are able to fix the diffusion coefficient,
the viscosity, the heat conductivity and the thermal diffusion parameter described in
section 7.3.

Expansion of the velocities

First, we want to consider the expansion of the velocities uε1k (x, t). If we just insert
(7.40) into (7.41), this will lead to expansions of the form

uε11 = uε12 +O(ε1),

uε12 = uε11 +O(ε1).
(7.44)

This is in accordance to our expectation that for ε1 → 0 the two velocities converge
to a common value, but the expansion (7.44) cannot be used to solve it for the two
velocities uε11 and uε12 . In order to do this we need an additional trick. This is done in
the following. The velocity of the ion expansion of the first term in (7.40) using the
expression of u12 is given by

1 + 1
β1
δ

1 + 1
β1

uε11 +

1
β1

(1− δ)
1 + 1

β1

uε12 .

We can split this expression into

ū+
−An1(1− δ) + n2(β1 + δ)

(β1 + 1)(An1 + n2)
uε11 +

An1(1− δ)− n2(β1 + δ)

(β1 + 1)(An1 + n2)
uε12 .

We denote

c1 :=
−An1(1− δ) + n2(β1 + δ)

(β1 + 1)(An1 + n2)
,

so

1 + 1
β1
δ

1 + 1
β1

uε11 +

1
β1

(1− δ)
1 + 1

β1

uε12 = ū+ c1u
ε1
1 − c1u

ε1
2 .

So we see from (7.40) that we get

uε11 = ū+ c1u
ε1
1 − c1u

ε1
2 −

1
1
ε1

+ 1
ε̃1

1

n1

∫
v
(
∂tf

M
1 + v · ∇xfM1

)
dv +O(ε2

1).

Solving this for uε11 leads to

uε11 = − c1
1− c1

uε12 +
1

1− c1
ū

− 1

1− c1
1

1
ε1

+ 1
ε̃1

1

n1

∫
v
(
∂tf

M
1 + v · ∇xfM1

)
dv +O(ε2

1).
(7.45)
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Similarly, we get for the electrons

uε12 = −
An1

n2
c1

1−An1

n2
c1
uε11 +

1

1−An1

n2
c1
ū

− 1

1−An1

n2
c1

1
1
ε2

+ 1
ε̃2

1

n2

∫
v
(
∂tf

M
2 + v · ∇xfM2

)
dv +O(ε2

1).

(7.46)

Solving (7.45) and (7.46) for uε11 and uε2 we get

uε11 = ū−
1−An1

n2
c1

1−An1

n2
c1 − c1

1
1
ε1

+ 1
ε̃1

1

n1

∫
v
(
∂tf

M
1 + v · ∇xfM1

)
dv

+
c1

1−An1

n2
c1 − c1

1
1
ε2

+ 1
ε̃2

1

n2

∫
v
(
∂tf

M
2 + v · ∇xfM2

)
dv +O(ε2

1),

uε12 = ū−
An1

n2
c1

−1 + c1 +An1

n2
c1

1
1
ε1

+ 1
ε̃1

1

n1

∫
v
(
∂tf

M
1 + v · ∇xfM1

)
dv

+
1− c1

−1 + c1 +An1

n2
c1

1
1
ε2

+ 1
ε̃2

1

n2

∫
v
(
∂tf

M
2 + v · ∇xfM2

)
dv +O(ε2

1).

(7.47)

Remark 7.4.1. At this point we observe that we cannot use the parameter γ from
(7.27) because |uε11 − u

ε1
2 |2 is of order ε2

1 and has no influence on the order ε1.

Remark 7.4.2. According to section 7.3 we expect to have a diffusion coefficient
in front of the integrals in (7.47). We want to be able to fix it to the value which
one obtains from experiments. We observe that we have a free parameter in the
expression in front of the integrals in (7.47), since the constant c1 depends on the
undetermined parameter δ.

Expansion of the temperatures

In the case of the temperature we do the same trick as in the case of the velocities.
The temperature of the first term on the right-hand side in the ion expansion in
(7.40) can be written as

1 + 1
β1
α

1 + 1
β1

T ε11 +

1
β1

(1− α)

1 + 1
β1

T ε12 ,

by using the expression of T12. We can split this expression into

T̄ +
−An1(1− α) + m1

m2
n2(β1 + α)

(β1 + 1)(An1 + m1

m2
n2)

T ε11 +
An1(1− α)− m1

m2
n2(β1 + α)

(β1 + 1)(An1 + m1

m2
n2)

T ε12 .

We denote

c2 :=
−An1(1− α) + m1

m2
n2(β1 + α)

(β1 + 1)(An1 + m1

m2
n2)

,
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so

1 + 1
β1
α

1 + 1
β1

T ε11 +

1
β1

(1− α)

1 + 1
β1

T ε12 = T̄ + c2T
ε1
1 − c2T

ε1
2 .

We see from (7.40) that

T ε11 = T̄ + c2T
ε1
1 − c2T

ε1
2 −

1
1
ε1

+ 1
ε̃1

1

3n1

∫
|v − ū|2(∂tf

M
1 +∇x · (vfM1 ))dv +O(ε2

1).

Solving this for T ε11 leads to

T ε11 =
1

1− c2
T̄ − c2

1− c2
T ε12

− 1
1
ε1

+ 1
ε̃1

1

3n1

1

1− c2

∫
|v − ū|2(∂tf

M
1 +∇x · (vfM1 ))dv +O(ε2

1).
(7.48)

Similarly, we get for the electrons

T ε12 =
1

1−An1

n2

m2

m1
c2
T̄ −

An1

n2

m2

m1
c2

1−An1

n2

m2

m1
c2
T ε11

− 1
1
ε2

+ 1
ε̃2

m2

m1

1

3n2

1

1−An1

n2

m2

m1
c2

∫
|v − ū|2(∂tf

M
2 +∇x · (vfM2 ))dv +O(ε2

1).

(7.49)

Solving (7.48) and (7.49) for T ε11 and T ε2 we get

T ε11 = T̄ − 1
1
ε1

+ 1
ε̃1

1−An1

n2

m2

m1
c2

1−An1

n2

m2

m1
c2 − c2

1

3n1

∫
|v − ū|2(∂tf

M
1 +∇x · (vfM1 ))dv

− 1
1
ε2

+ 1
ε̃2

m2

m1

1

3n2

c2
1−An1

n2

m2

m1
c2 − c2

∫
|v − ū|2(∂tf

M
2 +∇x · (vfM2 ))dv +O(ε2

1),

(7.50)

T ε12 = T̄ − 1
1
ε2

+ 1
ε̃2

1− c2
−1 + c2 +An1

n2

m2

m1
c2

m2

m1

1

3n2

∫
|v − ū|2(∂tf

M
2 +∇x · (vfM2 ))dv

− 1
1
ε1

+ 1
ε̃1

1

3n1

An1

n2

m2

m1
c2

−1 + c2 +An1

n2

m2

m1
c2

∫
|v − ū|2(∂tf

M
1 +∇x · (vfM1 ))dv +O(ε2

1).

(7.51)

If we compute the expansion of the non-diagonal elements of the pressure tensor, the
zeroth order vanishes and we obtain∫

(vl − u1,l)(vm − u1,m)f1dv =

− 1
1
ε1

+ 1
ε̃1

∫
(vl − u1,l)(vm − u1,m)(∂tf

M
1 +∇x · (vfM1 ))dv +O(ε2

1),
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∫
(vl − u2,l)(vm − u2,m)f2dv =

− 1
1
ε2

+ 1
ε̃2

∫
(vl − u2,l)(vm − u2,m)(∂tf

M
2 +∇x · (vfM2 ))dv +O(ε2

1),

for l,m = 1, 2, 3, l 6= m.

Remark 7.4.3. According to section 7.3 we expect to have a viscosity coefficient in
front of the integrals in the expansion of the pressure tensor which we want to be
able to fix it to the value which one obtains from experiments. We observe that we
have a free parameter in the expression in front of the integrals in (7.50) and (7.51),
since the constant c2 depends on the undetermined parameter α from (7.27).

Expansion of the heat fluxes

If we insert the expansion (7.40) into (7.43) and use the definition of the mixture
Maxwell distributions (7.14), we get

1

2

∫
|v|2vf1dv =

5

2

1

1 + β1
n1

n2

n1

[(β1
n1

n2
+ αδ)T ε11 uε11 + α(1− δ)T ε11 uε12 + (1− α)δT ε12 uε11 + (1− α)(1− δ)T ε12 uε12 ]

+
1

2

1

1 + β1
n1

n2

n1[(β1
n1

n2
|uε11 |2u

ε1
1 + |δuε11 + (1− δ)uε12 |2(δuε11 + (1− δ)uε12 )]

− 1

2

1
1
ε1

+ 1
ε̃1

∫
|v|2v(∂tf

M
1 +∇x · (vfM1 ))dv +O(ε2

1),

in which we can insert the expansions for the velocities and the temperatures. The
zeroth order is given by

5

2
n1(T̄ ū+ |ū|2ū).

The heat flux for species 2 is given by

m2

m1

1

2

∫
|v|2vf2dv =

5

2

1

1 + β1
n1

n2

n2

[β2
n2

n1
T ε12 uε12 + (αT ε11 + (1− α)T ε12 )(uε12 −

m1

m2
ε(1− δ)(uε12 − u

ε1
1 ))]

+
1

2

1

1 + β2
n2

n1

n1[β2
n2

n1
|uε12 |2u

ε1
2

+ |uε12 −
m1

m2
ε(1− δ)(uε12 − u

ε1
1 )|2(uε12 −

m1

m2
ε(1− δ)(uε12 − u

ε1
1 ))]

− 1

2

1
1
ε2

+ 1
ε̃2

∫
|v|2v(∂tf

M
2 +∇x · (vfM2 ))dv +O(ε2

1).

Here, the zeroth order is given by

5

2
n2(T̄ ū+ |ū|2ū).
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Remark 7.4.4. According to section 7.3 we expect to have the thermal conductivity
and the thermal diffusion parameter in front of the integrals in the expansion of
the heat flux which we want to be able to fix to the value which one obtains from
experiments. We observe that we do not have more free parameters since α and δ are
already fixed in order to obtain the right viscosity and diffusion coefficient. But if we
perform the extension of the BGK to an ES-BGK model we will obtain an additional
free parameter in the pressure tensor similar as it is done in the one species case.
Instead of fixing α as described in remark 7.4.3, this allows to fix the additional
parameter such that we get the right expression of the viscosity coefficient. Then the
parameter α remains undetermined and we can use it to fix the thermal conductivity
in the heat flux. A fourth free parameter is gained if we treat the one collision
frequency as a free parameter as it is done in [48]. With this we can determine the
diffusion coefficient such that the parameter δ remains undetermined and we can fix
it in the heat flux expansion such that the thermal diffusion parameter has the right
physical value.

7.5 The Brunn-Minkowski inequality

In the following we want to introduce ES-BGK models for mixtures. First of all we
want to prove consistency of these models meaning that they satisfy the conservation
properties and the H-theorem. For the H-theorem we will need the next lemma which
is proven in [2]. For the convenience of the reader we will repeat it here.

Lemma 7.5.1 (Brunn-Minkowski inequality). Let 0 ≤ b ≤ 1 and A,B be two positive
symmetric matrices with the same basis of eigenvectors. Then

det(bA+ (1− b)B) ≥ (detA)b(detB)1−b. (7.52)

Proof. The proof is given in [2]. For the convenience of the reader we want to repeat
it here. If A and B both have an eigenvalue zero, the inequality is satisfied. So
without loss of generality all eigenvalues of A are different from zero. Then A is
invertible, and we have

det(bA+ (1− b)B) = detAdet(b1+ (1− b)A−1B). (7.53)

Denote C = A−1B. Then C is diagonalizable and in particular it has the same set of
eigenvectors than A and B, since A and B are simultaneously diagonalizable.. We
denote the eigenvalues of C by ci. We observe that all ci are strictly positive since
they are the quotients of the strictly positive eigenvalues of A and B. Then (7.52) is
equivalent to

det(b1 + (1− b)C) ≥ (detC)1−b (7.54)

using (7.53). So we want to prove (7.54). This is equivalent to∏
i

(b+ (1− b)ci) ≥
∏
i

c1−bi .
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We take the logarithm, which is possible, since b and ci are strictly positive:∑
i

ln(b+ (1− b)ci) ≥ (1− b)
∑
i

ln ci.

This is satisfied, since ln is a concave function. So (7.54) is true. Replacing C by
A−1B, we get

det(b1+ (1− b)A−1B) ≥ (detA−1B)1−b = (detA)−(1−b)(detB)1−b

= (detA)b−1(detB)1−b,

which is the claimed inequality.

Actually, we will need the following extension of the Brunn-Minkowski inequality.

Lemma 7.5.2 (Extension of the Brunn-Minkowski inequality). Let − 1
2 ≤ a ≤ 1 and

A,E,D positive symmetric matrices. Then

det

(
1 + 2a

3
A+

1− a
3

E +
1− a

3
D

)
≥ (detA)

1+2a
3 (detE)

1−a
3 (detD)

1−a
3 .

Proof. We have

det

(
1 + 2a

3
A+

1− a
3

E +
1− a

3
D

)
= det

(
1 + 2a

3
A+ 2

1− a
3

1

2
(E +D)

)
.

Choose b = 1+2a
3 and B = 1

2 (E +D). Since − 1
2 ≤ a ≤ 1, b is restricted to 0 ≤ b ≤ 1.

Then by the Brunn-Minkowski inequality (7.52), we get

det

(
1 + 2a

3
A+

1− a
3

E +
1− a

3
D

)
≥ (detA)

1+2a
3

(
det

(
1

2
(E +D)

))2 1−a
3

.

Again by the Brunn-Minkowski inequality for b = 1
2 on the second term, we obtain

det

(
1 + 2a

3
A+

1− a
3

E +
1− a

3
D

)
≥ (detA)

1+2a
3 (detE)

1−a
3 (detD)

1−a
3 .

7.6 Extensions to an ES-BGK approximation

In this section we want to present three possible extensions to an ES-BGK model for
gas mixtures. The first one has the attempt to keep it as simple as possible and extend
only the Maxwell distribution in the single relaxation term describing the relaxation
of the distribution function to an equilibrium distribution due to interactions of
the species with itself. The two other extensions try to do it more symmetrically
and extend every Maxwell distribution. The first ansatz in this case is to extend
it exactly analogously as in the one species case and the second ansatz proposes
a different extension which is motivated by the physical intuition of the physicist
Holway who invented the ES-BGK model in [54]. These extensions are also presented
by Klingenberg, Pirner and Puppo in [62].
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7.6.1 Extension of the single relaxation terms

Motivated by the need to find a two species kinetic model that allows us to model
physical parameters better we extend the above model by generalizing the Maxwell
distributions. The simplest choice is to replace only the collision operators which
represent the collisions of a species with itself by the ES-BGK collision operator for
one species as suggested in [3]. Then the model can be written as:

∂tfk + v · ∇xfk = νkknk(Gk − fk) + νkjnj(Mkj − fk), k, j = 1, 2, j 6= k, (7.55)

with the modified Maxwell distributions

Gk(x, v, t) =
nk√

det(2π Tkmk )
exp

(
−1

2
(v − uk) ·

(
Tk
mk

)−1

· (v − uk)

)
, k = 1, 2,

(7.56)

and M12,M21 the Maxwell distributions described in the previous sections. G1 and
G2 have the same densities, velocities and pressure tensors as f1 and f2, respectively,
so we still guarantee the conservation of mass, momentum and energy in interactions
of one species with itself. Since the first term describes the interactions of a species
with itself, it should correspond to the single ES-BGK collision operator suggested in
section 7.1. So we choose T1 and T2 as

Tk = (1− µ̃k)Tk1 + µ̃k
Pk
nk
, (7.57)

with µ̃k ∈ R, k = 1, 2 being free parameters which we can choose in a way to fix
physical parameters in the Navier-Stokes equations. So, all in all, together with the
parameters in the mixture Maxwell distributions (7.18) and (7.19) we now have five
free parameters, see (7.18) and (7.19) for the other free parameters.

Since we wrote T −1
k we have to check whether Tk is invertible. Otherwise the

model is not well-posed. For the one species tensor this is done by the following
theorem proven in [3].

Theorem 7.6.1. Assume that fk > 0. Then Pk
nk

has strictly positive eigenvalues. If we
further assume that − 1

2 ≤ µk ≤ 1, then Tk has strictly positive eigenvalues and therefore
Tk is invertible.

Equilibrium of the single extension

In global equilibrium when f1 and f2 are independent of x and t, the right-hand side
of (7.55) has to be zero. In this case we get

f1 =
1

ν11n1 + ν12n2
(ν11n1G1 + ν12n2M12).
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If we compute the velocities of this expression, we can deduce u1 = u2 for δ 6= 1. If
we compute the temperatures of this expression using u1 = u2, we get

T1 =
1

ν11n1 + ν12n2
(ν11n1T1 + ν12n2(αT1 + (1− α)T2)),

which is equivalent to T1 = T2 for α 6= 1. So let T := T1 = T2 and use u1 = u2. If we
compute the pressure tensors, we get

(ν11n1 + ν12n2)P1 = ν11n1T1 + ν12n2T12

= ν11n1(1− µ̃1)T1 + ν11n1µ̃1P1 + ν12n2T1,

which is equivalent to

(ν11n1 + ν12n2 − ν11n1µ̃1)P1 = (ν11n1 + ν12n2 − ν11n1µ̃1)T1,

which is P1 = T1 for δ, α 6= 1, µ̃1 ≤ 1. This means that the pressure tensors of f1 and
f2 are diagonal and f1, f2 are Maxwell distributions with equal mean velocity and
temperature. δ = 1 or α = 1 are cases in which the mixture Maxwell distributions do
not contain the velocity or the temperature of the other species, see (7.18) and (7.19).
In this case the two gases do not exchange information and a global equilibrium
cannot be reached.

Entropy inequality of the single extension

Theorem 7.6.2 (H-theorem for the mixture). Assume δ, α 6= 1. Assume that f1, f2 > 0
are solutions to (7.13). Assume the relationship between the collision frequencies (7.16),
the conditions for the interspecies Maxwell distributions (7.18), (7.20), (7.19) and
(7.21) and the positivity of the temperatures (7.22). Denote the collision terms on the
right-hand side of (7.13) by Q11(f1, f1), Q12(f1, f2), Q21(f2, f1) and Q22(f2, f2). Then∫

ln f1 Q11(f1, f1) + ln f1 Q12(f1, f2)dv +

∫
ln f2 Q22(f2, f2) + ln f2 Q21(f2, f1)dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean velocity
and temperature.

Proof. The fact that
∫

ln fk Qkk(fk, fk)dv ≤ 0, k = 1, 2 with a criteria for equality
follows from the H-theorem of the ES-BGK model for one species, see [3]. The fact
that

∫
ln f1 Q12(f1, f2)dv +

∫
ln f2 Q21(f1, f2)dv ≤ 0 with a corresponding criteria

for equality follows from the H-theorem of the BGK model for mixtures, see the proof
of theorem 2.1.6.

7.6.2 Alternative extensions to an ES-BGK model

In this section we also want to replace the scalar temperatures in the mixture Maxwell
distributions by a tensor. In the first model the terms (vj − ukj)fk(vi − uki) for i 6= j
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7 Extension to an ES-BGK model for a multi-component gas mixture

do not appear in the relaxation operator. To obtain a more detailed description of
the viscous effects in the mixture we take into account these cross terms during the
relaxation process. Then the model can be written as:

∂tfk + v · ∇xfk = νkknk(Gk − fk) + νkjnj(Gkj − fk), k = 1, 2, k 6= j, (7.58)

with the modified Maxwell distributions

Gk(x,v,t)=
nk√

det(2π
Tk
mk

)

exp

(
− 1

2 (v−uk)·
(
Tk
mk

)−1
·(v−uk)

)
k=1,2,

Gkj(x,v,t)=
nk√

det(2π
Tkj
mk

)

exp

(
− 1

2 (v−ukj)·
(Tkj
mk

)−1
·(v−ukj)

)
k,j=1,2,k 6=j,

(7.59)

with Tk defined by (7.57). Again, the conservation of mass, momentum and energy
in interactions of one species with itself is ensured by this choice of the modified
Maxwell distributions G1 and G2 which have the same densities, velocities and
pressure tensors as f1 and f2, respectively. In addition, the choice of the densities in
G12 and G21 also guarantees conservation of mass in interactions of one species with
the other one.

If we extend T12 and T21 in the same fashion to a tensor as in the case of one
species, we obtain

T12=(1−µ̃12)(αT1+(1−α)T2)1+µ̃12
αP1+(1−α)P2

n1
+γ|u1−u2|21, (7.60)

T21=(1−µ̃21)((1−ε(1−α))T2+ε(1−α)T1)1+µ̃21
(1−ε(1−α))P2+ε(1−α)P1

n2

+
(

1
3 εm1(1−δ)

(
m1
m2

ε(δ−1)+δ+1
)
−εγ

)
|u1−u2|21.

(7.61)

If we check the equilibrium distributions as in section 7.6.1, we obtain the following
restrictions on µ̃12 and µ̃21 given by

µ̃12 = 1 + (1− µ̃1)
n1

n2

ν11

ν12
, (7.62)

and

1

n2
1

[−(α− 1)2µ̃2
12n

2
2ν

2
12 +

n1

n2
2

((
µ̃21

ε
− µ̃21 + αµ̃21)n1ν12 + (µ̃2 − 1)n2ν22)

·(n1((α− 1)µ̃21n1 +
1

ε
(µ21 − 1)n2)ν12 + (µ̃2 − 1)n2

2ν22)] = 0.

(7.63)

An alternative choice to (7.60),(7.61) is given by

T12 = α
P1

n1
+ (1− α)T21 + γ|u1 − u2|21, (7.64)

T21 = (1− ε(1− α))
P2

n2
+ ε(1− α)T11

+

(
1

3
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

)
|u1 − u2|21.

(7.65)
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7.6 Extensions to an ES-BGK approximation

This choice of T12 still contains the temperature of gas 1, since the trace of the
pressure tensor P1

n1
is the temperature T1.

In (7.64) compared to (7.60) we replace only the temperature T1 of species 1 by
the pressure tensor P1 while we keep the temperature T2. This asymmetric choice can
be motivated by the theory of persistence of velocity described by Jeans in [55], [56],
[53] and chapter 7.1.3. Jeans argues that in the post-collisional speed of particle 1
there is a memory of the pre-collisional speed of particle 1. In the single species BGK
equation this yields to the choice of

T = (1− µ̃)T1 + µ̃P, −1

2
≤ µ̃ ≤ 1,

the tensor chosen in the well-known ES-BGK model, where µ̃ P preserves the memory
of the off-equilibrium content of the pre-collisional velocity. This can be rewritten as

T = T1 + µ̃ traceless[P],

where traceless[P] denotes the traceless part of P. So the off-equilibrium part is
contained in µ̃ traceless[P]. Doing this analogously for two species we arrive at

T12 = T121 +
α

n1
traceless[P1].

The quantity T12 is defined in (7.19). If we plug this definition in the equation above,
we end up with (7.64).

With the second choice the model is well-defined, because T12 and T21 are invert-
ible as a combination of strictly positive matrices as soon as all coefficients in front
of these matrices are positive, which is the case due to (7.22) and (7.23). The first
choice needs additional conditions coming from the restrictions on µ̃12 and µ̃21 given
by (7.62) and (7.63). The first one leads to

µ̃1 ≤
n2

n1

ν̃12

ν11
+ 1,

such that µ̃12 given by (7.62) is positive. The requirement of positivity of µ̃21 leads
to a corresponding restriction on µ̃2 using (7.63).

Equilibrium of the alternative extensions

The aim of this section is to discuss the property of the equilibrium and the entropy
inequality for the alternative extensions described in section 7.6.2 with the tensors
(7.60), (7.61) and (7.64), (7.65), respectively. For the tensors (7.60), (7.61) we
proved the property of equilibrium and the H-theorem in section 7.6.1 in the particular
case of µ̃12 = µ̃21 = 0 for simplicity, but we can also prove it in the general case. In this
section we will prove an entropy inequality for the alternative model (7.64),(7.65).
First we will check that the equilibrium distributions are Maxwell distributions. In
global equilibrium when f1 and f2 are independent of x and t, the right-hand side of
(7.58) has to be zero. In this case we get

f1 =
1

1 + 1
β2

1

n2

n1

(G1 +
1

β2
1

n2

n1
G12).
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7 Extension to an ES-BGK model for a multi-component gas mixture

If we compute the temperatures of this expression, we get

T1 =
1

1 + 1
β2

1

n2

n1

(T1 +
1

β2
1

n2

n1
(αT1 + (1− α)T2)),

which is equivalent to T1 = T2 for α 6= 1. So denote T := T1 = T2. If we compute
pressure tensors, we get

(1 +
1

β2
1

n2

n1
)P1 = T1 +

1

β2
1

n2

n1
T12

= (1− ν1)T + ν1P1 +
1

β2
1

n2

n1
αP1 +

1

β2
1

n2

n1
(1− α)T1,

which is equivalent to

((1− ν1) +
1

β2
1

n2

n1
(1− α))P1 = ((1− ν1) +

1

β2
1

n2

n1
(1− α))T1,

which leads to P1 = T1 for ν1, α 6= 1. That means that the pressure tensors of f1 and
f2 are diagonal and they are Maxwell distributions with equal mean velocity and
temperature.

Entropy inequality of the alternative extensions

Next, we want to prove the H-theorem of the model (7.64) and (7.65).

Lemma 7.6.3. Assuming (7.64) and (7.65) and the positivity of all temperatures and
pressure tensors (7.22), we have the following inequality

S := (det T12)ε(det T21) ≥
(

det
P1

n1

)ε
det

P2

n2
.

Proof. Using the definition of T12 we get

det T12 = det

(
α
P1

n1
+ (1− α)T21 + γ|u1 − u2|21

)
.

Since γ is non-negative, we can estimate the expression by dropping the positive
term on the diagonal γ|u1 − u2|21

det T12 ≥ det

(
α
P1

n1
+ (1− α)T21

)
.

With the Brunn-Minkowski-inequality (7.52) presented in chapter 7.5 we obtain

det T12 ≥
(

det
P1

n1

)α
(detT21)1−α.
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7.6 Extensions to an ES-BGK approximation

In a similar way, we can show a similar inequality for T21, so all in all we get

S ≥
(

det
P1

n1

)αε
(detT21)ε(1−α)

(
det

P2

n2

)1−ε(1−α)

(detT11)ε(1−α).

Consider the logarithm of this equation

lnS ≥ εα ln

(
det

(
P1

n1

))
+ ε(1− α) ln (det (T21))

+(1− ε(1− α)) ln

(
det

(
P2

n2

))
+ ε(1− α) ln (det (T11)) .

We use that ln (det (Ti1)) = Tr(ln (Ti1)) and denote the eigenvalues of Pi
ni

by λi,1, λi,2
and λi,3. Since the pressure tensors are symmetric, we can diagonalize them and use
that Ti = Tr Pi

3ni
= 1

3 (λi,1 + λi,2 + λi,3).

lnS ≥ εα(lnλ1,1 + lnλ1,2 + lnλ1,3) + ε(1− α)3 ln
1

3
(λ1,1 + λ1,2 + λ1,3)

+(1− ε(1− α))(lnλ2,1 + lnλ2,2 + lnλ2,3) + ε(1− α)3 ln
1

3
(λ2,1 + λ2,2 + λ2,3).

Since ln is concave, we can estimate ln 1
3 (λ1,1 + λ1,2 + λ1,3) from below by

1
3 (lnλ1,1 + lnλ1,2 + lnλ1,3) and obtain

lnS ≥ ε ln

(
det

(
P1

n1

))
+ ε(1− α) ln

(
det

(
P2

n2

))
.

This is equivalent to the required inequality.

Remark 7.6.1. From the case of one species ES-BGK model it follows that∫
Gk lnGkdv ≤

∫
Gk,µ̃k=1 lnGk,µ̃k=1dv ≤

∫
fk ln fkdv,

for k = 1, 2, see [3], where Gk,µ̃k=1 denotes the modified Maxwell distribution where
in the case of µ̃k = 1 the tensor Tk is given by (7.57).

Theorem 7.6.4 (H-theorem for the mixture). Assume α, δ 6= 1. Assume f1, f2 > 0.
Assume the relationship between the collision frequencies (7.16), the conditions for the
interspecies Maxwell distribution (7.18), (7.20), (7.64) and (7.65) and the positivity
of the temperatures (7.22), then∫

ln f1 Q11(f1, f1) + ln f1 Q12(f1, f2)dv +

∫
ln f2 Q22(f2, f2) + ln f2 Q21(f2, f1)dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean velocity
and temperature.
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7 Extension to an ES-BGK model for a multi-component gas mixture

Proof. The fact that
∫

ln fkQkk(fk, fk)dv ≤ 0, k = 1, 2 is shown in the proof of the
H-theorem of the single ES-BGK-model, for example in [3]. In both cases we have
equality if and only if f1 = M1 and f2 = M2.
Let us define

S(f1, f2) := ν12n2

∫
ln f1(G12 − f1)dv + ν21n1

∫
ln f2(G21 − f2)dv.

The task is to prove that S(f1, f2) ≤ 0. Consider now S(f1, f2) and apply the
inequality in lemma 1.3.12 to each of the two terms in S.

S(f1, f2) ≤ ν12n2

[∫
G12 lnG12dv −

∫
f1 ln f1dv −

∫
G12dv +

∫
f1dv

]

+ν21n1

[∫
G21 lnG21dv −

∫
f2 ln f2dv −

∫
G21dv +

∫
f2dv

]
,

with equality if and only if f1 = G12 and f2 = G21. If we compute the velocities of
f1 = G12 and f2 = G21, we can deduce u1 = u12 and u2 = u21 which leads to u1 = u2

using the definitions of u12, u21 given by (7.18) and (7.20). Analogously, computing
the temperatures, we get T12 = T21 = T1 = T2 =: T . Finally, computing the pressure
tensors, we obtain P1

n1
= P2

n2
= T1, which means that we have equality if and only if

f1 and f2 are Maxwell distributions with equal temperatures and velocities.
Since G12 and f1 have the same density and G21 and f2 have the same density too,
the right-hand side reduces to

ν12n2

(∫
G12 lnG12dv −

∫
f1 ln f1dv

)
+ ν21n1

(∫
G21 lnG21dv −

∫
f2 ln f2dv

)
.

Since∫
G lnGdv = n ln

 n√
det( 2πT

m )

− 3

2
n for G =

n√
det( 2πT

m )
e−(v−u)·( Tm )−1·(v−u),

we will have that

ν12n2

∫
G12 lnG12dv + ν21n1

∫
G21 lnG21dv

≤ ν21n1

∫
G2,µ̃2=1 lnM2,µ̃2=1dv + ν12n2

∫
G1,µ̃1=1 lnG1,µ̃1=1dv,

provided that

ν12n2n1 ln
n1√

det(2π T12

m1
)

+ ν21n2n1 ln
n2√

det(2π T21)
m2

≤ ν12n2n1 ln
n1√

det(2π P1

m1
)

+ ν21n2n1 ln
n2√

det(2π P2

m2
)
,
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7.6 Extensions to an ES-BGK approximation

which is equivalent to the condition

(det T12)ε(det T21) ≥
(

det
P1

n1

)ε
det

P2

n2
,

proven in lemma 7.6.3.
With this inequality we get

S(f1, f2) ≤ ν12n2[

∫
G1,µ̃1=1 lnG1,µ̃1=1dv −

∫
f1 ln f1dv]

+ ν21n1[

∫
G2,µ̃2=1 lnG2,µ̃2=1dv −

∫
f2 ln f2dv] ≤ 0.

The last inequality follows from remark 7.6.1. Here we also have equality if and
only if f1 = M1 and f2 = M2, but since we already noticed that equality also implies
f1 = G12 and f2 = G21.

Define the total entropy H(f1, f2) =
∫

(f1 ln f1 + f2 ln f2)dv. We can compute

∂tH(f1, f2) +∇x ·
∫

(f1 ln f1 + f2 ln f2)vdv = S(f1, f2),

by multiplying the ES-BGK equation for the species 1 by ln f1, the ES-BGK equation
for the species 2 by ln f2 and integrating the sum with respect to v.

Corollary 7.6.5 (Entropy inequality for mixtures). Assume f1, f2 > 0. Assume a fast
enough decay of f to zero for v →∞. Assume relationship (7.16), the conditions (7.18),
(7.20), (7.64) and (7.65) and the positivity of the temperatures (7.22), then we have
the following entropy inequality

∂t

(∫
f1 ln f1dv +

∫
f2 ln f2dv

)
+∇x ·

(∫
vf1 ln f1dv +

∫
vf2 ln f2dv

)
≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean velocity
and temperature.

In summary the ES-BGK models (7.55) and (7.58) have the five free parameters
α, δ, µ̃1, µ̃2 and ν12. Let us summarize our result concerning what we expect from
section 7.3. As we have seen in section 7.4, the parameter ν12 will show up in the
expansion of the velocities (7.47) where we expect the diffusion coefficient. The
parameters α and δ will show up in the expansion of the heat fluxes (7.43) where
we expect the heat conductivity and the heat flux. From the motivation in the case
of one species in section 7.1, we observe that the ES-BGK extension has the effect
that the parameters µ̃1 and µ̃2 will show up in the expansion of the pressure tensors
(7.50) and (7.51) where we expect the viscosity coefficient.
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Chapter 8

Application to polyatomic mixtures

In this chapter we shall concern ourselves with a kinetic description of gas mixtures for
polyatomic molecules. Evolution of a polyatomic gas is very important in applications,
for instance air consists of a gas mixture of polyatomic molecules. But, most kinetic
models modelling air deal with the case of a mono-atomic gas consisting of only one
species.

In the literature one can find two types of models for one species of polyatomic
molecules. There are models which contain a sum of collision terms on the right-hand
side corresponding to the elastic and inelastic collisions. Examples are the models of
Rykov [76], Holway [54] and Morse [68]. The other type of models contain only one
collision term on the right-hand side taking into account both elastic and inelastic
interactions. Examples for this are Bernard, Iollo, Puppo [14] and the model by
Bisi and Caceres [18]. In this chapter we want to extend the model of Bernard,
Iollo and Puppo [14] from one species of molecules to a gas mixture of polyatomic
molecules. In contrast to mono-atomic molecules, in a polyatomic gas, energy is not
entirely stored in the kinetic energy of its molecules but also in their rotational and
vibrational modes. For simplification we present the model in the case of two species.
We allow the two species to have different degrees of freedom in internal energy. For
example, we may consider a mixture consisting of a mono-atomic and a diatomic gas.
In addition, we want to model it via an ES-BGK approach in order to reproduce the
correct Boltzmann hydrodynamic regime close to the asymptotic continuum limit.
The ES-BGK approximation was suggested by Holway in the case of one species [54].
The H-theorem of this model then was proven in [2]. Brull and Schneider relate this
model to a minimization problem in [23]. This model presented here for polyatomic
molecules is also described in [60] by Klingenberg, Pirner and Puppo.

The outline of this chapter is as follows: in section 8.1 we will present the
extension of the BGK model for one species of polyatomic molecules from [14] to two
species of polyatomic molecules. In section 8.2, we extend it to an ES-BGK model
and check if it is well-defined. In sections 8.2.1 to 8.2.4 we prove the conservation
properties and the H-theorem. We show the positivity of all temperatures and quantify
the structure of the equilibrium. In section 8.3, we compare our model reduced to
one species with an other model presented in the literature from [2] which considers
an ES-BGK model for one species of polyatomic molecules. In section 8.4.1 we apply
the method of Chu reduction to our model in order to reduce the complexity of the
variables for the rotational and vibrational energy degrees of freedom for numerical
purposes. In section 8.4.2 we give an application in the case of a mono-atomic and a
diatomic molecule. In section 8.5 we show that with a polyatomic model we are able
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8 Application to polyatomic mixtures

to capture an equation of state which is different to the ideal gas law. In section 8.6
we conclude with existence and uniqueness results.

8.1 The BGK approximation for polyatomic mixtures

For simplicity in the following we consider a mixture composed of two different
species. Let x ∈ Rd and v ∈ Rd, d ∈ N be the phase space variables and t ≥ 0 the
time. Let M be the total number of different rotational and vibrational degrees
of freedom and lk the number of rotational and vibrational degrees of freedom of
species k, k = 1, 2. Note that the sum l1 + l2 is not necessarily equal to M , because
M counts only the different degrees of freedom in the internal energy, l1 + l2 counts
all degrees of freedom in the internal energy. For example, consider two species
consisting of diatomic molecules which have two rotational degrees of freedom. In
addition, the second species has one vibrational degree of freedom. Then we have
M = 3, l1 = 2, l2 = 3. Further, η ∈ RM is the variable for the internal energy degrees
of freedom, ηlk ∈ RM coincides with η in the components corresponding to the
internal degrees of freedom of species k and is zero in the other components.

Since we want to describe two different species, our kinetic model has two
distribution functions f1(x, v, ηl1 , t) > 0 and f2(x, v, ηl2 , t) > 0. Furthermore, we
relate the distribution functions to macroscopic quantities by mean-values of fk,
k = 1, 2 as follows

∫
fk(v, ηlk)


1
v
ηlk

mk|v − uk|2
mk|ηlk − η̄k|2

mk(v − uk)⊗ (v − uk)

 dvdηlk =:


nk
nkuk
nkη̄k

dnkT
trans
k

lknkT
rot
k

Pk

 , k = 1, 2, (8.1)

where nk is the number density, uk the mean velocity and T transk the temperature
of the translation, T rotk the temperature of the rotation and vibration and Pk the
pressure tensor of species k, k = 1, 2. Note that in this chapter we shall write T transk

and T rotk instead of kBT transk and kBT rotk , where kB is Boltzmann’s constant. In the
following, we will require η̄k = 0, which means that the energy in rotations clockwise
is the same as in rotations counter clockwise. Similar for vibrations.

First, we are interested in a BGK approximation of the interaction terms and write
the model as:

∂tf1 + v · ∇xf1 = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂tf2 + v · ∇xf2 = ν22n2(M2 − f2) + ν21n1(M21 − f2),
(8.2)
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with the Maxwell distributions

Mk(x, v, ηlk , t) =
nk√

2π Λk
mk

d

1√
2π Θk

mk

lk
exp

(
−|v − uk|

2

2 Λk
mk

− |ηlk |
2

2 Θk
mk

)
, k = 1, 2,

M12(x, v, ηl1 , t) =
n1√

2πΛ12

m1

d

1√
2πΘ12

m1

l1
exp

(
−|v − u12|2

2Λ12

m1

− |ηl1 |
2

2Θ12

m1

)
,

M21(x, v, ηl2 , t) =
n2√

2πΛ21

m2

d

1√
2πΘ21

m2

l2
exp

(
−|v − u21|2

2Λ21

m2

− |ηl2 |
2

2Θ21

m2

)
.

(8.3)

The quantities in the Maxwell distributions will be defined on the following page.
The quantities ν11n1 and ν22n2 are the collision frequencies of the particles of each
species with itself, while ν12n2 and ν21n1 are related to interspecies collisions. To
be flexible in choosing the relationship between the collision frequencies, we now
assume the relationship

ν12 = εν21, 0 <
l1

l1 + l2
ε ≤ 1. (8.4)

The restriction l1
l1+l2

ε ≤ 1 is without loss of generality. If l1
l1+l2

ε > 1, exchange the
notation 1 and 2 and choose 1

ε as new ε. In addition, we assume that all collision
frequencies are positive.

Since rotational/vibrational and translational degrees of freedom relax at a differ-
ent rate, T transk and T rotk will first relax to partial temperatures Λk and Θk, respec-
tively. Conservation of internal energy then requires that at each time

d

2
nkΛk =

d

2
nkT

trans
k +

lk
2
nkT

rot
k − lk

2
nkΘk, k = 1, 2. (8.5)

Thus, Λk can be written as a function of Θk. In equilibrium we expect the two
temperatures Λk and Θk to coincide, so we close the system by adding the equations

∂tMk + v · ∇xMk =
νkknk
Zkr

d+ lk
d

(M̃k −Mk) + νkknk(Mk − fk)

+ νkjnj(Mkj − fk),

(8.6)

for k, j = 1, 2, j 6= k, where Zkr are given parameters corresponding to the different
rates of decays of translational and rotational/vibrational degrees of freedom. Here
Mk is given by

Mk(x, v, ηlk , t) =
nk√

2π Λk
mk

d

1√
2π Θk

mk

lk
exp

(
−|v − uk|

2

2 Λk
mk

− |ηlk |
2

2 Θk
mk

)
, k = 1, 2,

(8.7)
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and M̃k is given by

M̃k =
nk√

2π Tk
mk

d+lk
exp

(
−mk|v − uk|2

2Tk
− mk|ηlk |2

2Tk

)
, k = 1, 2, (8.8)

where Tk is the total equilibrium temperature and is given by

Tk :=
dΛk + lkΘk

d+ lk
=
dT transk + lkT

rot
k

d+ lk
. (8.9)

The second inequality follows from (8.5). If we multiply (8.6) by |ηlk |2, integrate
with respect to v and ηlk and use (8.9), we obtain

∂t(nkΘk) +∇x · (nkΘkuk) =
νkknk
Zkr

nk(Λk −Θk) + νkknknk(Θk − T rotk )

+ νkjnjnk(Θkj − T rotk ),
(8.10)

for k, j = 1, 2, j 6= k. We obtain a macroscopic equation which describes the relax-
ation of the temperature Θk towards the temperature Λk and the relaxation of Θk

towards the rotational and vibrational temperature T rotk and of T rotk relaxing towards
the mixture temperature Θkj in accordance with equation (8.2). Note that equation
(8.10) together with mass, momentum and total energy conservation, is equivalent
to (8.6). In addition, (8.2) and (8.10) are consistent. If we multiply the equations
for species k of (8.2) and (8.10) by v and integrate with respect to v, we get in both
cases for the right-hand side

νkjnknj(ujk − uj),

and if we compute the total internal energy of both equations, we obtain in both
cases

1

2
νkjnknj [dΛjk + ljΘjk − (dΛj + ljΘj)].

We will see this in theorem 8.2.3.
We recall that we assume that the mean-values of the momentum due to the

internal degrees of freedom η̄1, η̄2, η̄12 and η̄21 are assumed to be zero. The structure
of the collision terms ensures that at equilibrium or when νkj →∞ the distribution
functions become Maxwell distributions. With this choice of the Maxwell distributions
M1 and M2 have the same densities, mean velocities and internal energies as f1 and
f2, respectively. This guarantees the conservation of mass, momentum and energy
(especially internal energy) in interactions of one species with itself. The remaining
parameters u12, u21,Λ12, Λ21, Θ12 and Θ21 will be determined further down using
conservation of the number of particles, total momentum and total energy, together
with some symmetry considerations.
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8.2 Extension to an ES-BGK model

8.2 Extension to an ES-BGK model

As we know from chapter 7 that a drawback of the BGK approximation is its incapa-
bility of reproducing the correct Boltzmann hydrodynamic regime in the asymptotic
continuum limit. In the polyatomic model we want to keep it as simple as possible
and replace only the collision operators which represent the collisions of a species
with itself by the ES-BGK collision operator. Other possible extensions are illustrated
in the mono-atomic case for gas mixtures in chapter 7 and [62]. In this standard
ES-BGK model, the scalar temperature T transk is related to the distribution function
fk in the Maxwell distributions Mk and will be replaced by a linear combination of
the temperature T transk and the pressure tensor Pk. In the polyatomic case described
in this chapter the translational temperature T transk is different from the tempera-
ture Λk of the Maxwell distributions Mk given by (8.7). Now, we want to extend
this temperature Λk to a tensor Λtenk with Tr(Λtenk ) = nkΛk such that again we can
consider a linear combination of the temperature Λk and the tensor Λtenk . In the
BGK case described in the previous section we determined the time evolution of Θk

by considering equation (8.6) with the Maxwell distribution Mk given by (8.7) and
the Maxwell distribution M̃k given by (8.8) with the total equilibrium temperature
Tk given by (8.9). This led to a time evolution of Θk given by (8.10). Λk is then
obtained by (8.5). Now, in the ES-BGK case we determine the time evolution of Λtenk
by considering the equation

∂tĜk + v · ∇xĜk =
νkknk
Zkr

d+ lk
d

(G̃k − Ĝk) + νkknk(Gk − fk) + νkjnj(Mkj − fk),

(8.11)

for k = 1, 2, with the extended Maxwell distribution Ĝk given by

Ĝk=
nk√

det(2π
Λten
k
mk

)

1√
2π
Trot
k
mk

lk
exp

(
− 1

2 (v−uk)·
(

Λtenk
mk

)−1

·(v−uk)−
mk|ηlk

|2

2Θk

)
, (8.12)

for k = 1, 2, and the extended Maxwell distribution G̃k given by

G̃k=
nk√

det(2π
Tten
k
mk

)

1√
2π

Tk
mk

lk
exp

(
− 1

2 (v−uk)·
(
Ttenk
mk

)−1

·(v−uk)− 1
2

mk|ηlk
|2

Tk

)
, (8.13)

and the extended Maxwell distribution

Gk=
nk√

det(2π
ΛES
k
mk

)

1√
2π

Θk
mk

lk
exp

(
− 1

2 (v−uk)·
(

ΛESk
mk

)−1

·(v−uk)− 1
2

mk|ηlk
|2

Θk

)
. (8.14)

We define ΛESk in the function Gk as a linear combination of Λk and Λtenk given by

ΛESk = (1− µ̃k)Λk1n + µ̃k
Λtenk
nk

, k = 1, 2,

with µ̃k ∈ R, k = 1, 2 being free parameters which can be chosen in a way to fit
physical parameters in the Navier-Stokes equations like the viscosity coefficient, ana-
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logously as in the standard ES-BGK model. The function G̃k has the total equilibrium
temperature Tk and the pressure tensor of fk on the off-diagonals, namely

(T tenk )ii = Tk for i = 1, . . . , d,

(T tenk )ij =
d

d+ lk

(
Pk
nk

)
ij

for i, j = 1, . . . , d, i 6= j.
(8.15)

The factor d
d+lk

in front of Pk in the definition of T tenk has the following reason.
The temperature Tk given by (8.9) is a convex combination of T transk and T rotk .
Now, the off-diagonal elements of T tenk have the same structure. It is a convex
combination of the pressure tensor Pk and the tensor corresponding to the rotational
and vibrational temperature. But since the rotational effects are diagonal, we have
(T tenk )ij = d

d+lk
(Pk)ij + lk

d+lk
0 for i 6= j.

We only extend Λk to a tensor and keep Θk as it is. This has the following reason.
Since we assumed η̄lk = 0, the microscopic velocities related to the internal degrees
of freedom are symmetric and then we do not distinguish different directions as we
do in the translational degrees of freedom.

Equation (8.11) leads to a time evolution of Λtenk given by

∂t(nk(Λtenk )ij) +∇x · (nk((Λtenk )ij)uk) =
νkknk
Zkr

d+ lk
d

nk((T tenk )ij − (Λtenk )ij)

+ νkknknk((ΛESk )ij − (Pk)ij) + νkjnjnk(Θkj − T rotk )δij ,

(8.16)

for k = 1, 2 and i, j = 1, ..., d. We determine the time evolution of fk in the ES-BGK
case by

∂tfk + v · ∇xfk = νkknk(Gk(fk)− fk) + νkjnj(Mkj(fk, fj)− fk), (8.17)

for k, j = 1, 2, k 6= j. For further references we denote the relaxation operators by
Q11, Q12, Q21 and Q22.

Since Gk involves the term (ΛESk )−1 and G̃k involves the term (T tenk )−1 we have
to check if ΛESk and T tenk are invertible.

Lemma 8.2.1. Assume that fk and Ĝk are positive solutions to (8.17) and (8.11).
Then Λtenk and T tenk have strictly positive eigenvalues. Especially, the symmetric matrix
T tenk is invertible.

Proof. Let y ∈ Rd \ {0}, then

y · Λtenk · y =

d∑
i,j=1

yi(Λ
ten
k )ijyj =

d∑
i,j=1

yi

∫
(vi − uk,i)(vj − uk,j)Ĝkyjdv

=

∫ ( d∑
i=1

yi(vi − uk,i)

)2

Ĝkdv ≥ 0.

166



8.2 Extension to an ES-BGK model

The inequality is true since we assumed that Ĝk is a positive solution to (8.6).
If we use equation (8.9) and (8.5)

y · T tenk · y =

d∑
i,j=1

yi(T
ten
k )ijyj =

d∑
i,j=1
i 6=j

yi

∫
(vi − uk,i)(vj − uk,j)fkyjdv +

d∑
i=1

yiTkyi

=

d∑
i,j=1

yi

∫
(vi − uk,i)(vj − uk,j)fkyjdv −

d∑
i=1

yiT
trans
k yi +

d∑
i=1

yi
dΛk + lkΘk

d+ lk
yi

=

∫ ( d∑
i=1

yi(vi − uk,i)

)2

fkdv +

d∑
i=1

yiT
rot
k yi ≥ 0,

where T rotk > 0 because T rotk is defined via a positive integral of fk, see the definition
in (8.1). We even have strict inequality since {yi(v−ui)}di=1 are linearly independent.

With the previous lemma, we can prove that ΛESk is positive. This is the next
theorem. Positivity is also proven in [3] for the one species case, but for a different
variant of an ES-BGK model.

Theorem 8.2.2. Assume that fk > 0 and − 1
d−1 ≤ µ̃k ≤ 1. Then ΛESk has strictly

positive eigenvalues. Especially ΛESk is invertible.

Proof. Since Λtenk is symmetric there exists an invertible matrix Sk such that Λ̃tenk =

SkΛtenk S−1
k with a diagonal matrix Λ̃tenk . Then Λ̃ESk := SkΛESk S−1

k is also diagonal
since

Λ̃ESk = SkΛESk S−1
k = (1− µ̃k)Λk1+ µ̃kΛ̃tenk .

Here we can see that the eigenvalues of Λ̃ESk are a linear combination of Λk and
the eigenvalues of Λ̃tenk which coincide with the eigenvalues of Λtenk . We denote the
eigenvalues of Λtenk by λk,1, λk,2, . . . , λk,d. Then by definition of Λk and Λtenk we have

dΛk = Tr(Λtenk ) = λk,1 + λk,2 + · · ·+ λk,d.

This means for the eigenvalues of ΛESk denoted by τk,i:

τk,i =
1− µ̃k
d

d∑
j=1

λk,j+µ̃kλk,i =
1 + (d− 1)µ̃k

d
λk,i+

1− µ̃k
d

d∑
j=1,j 6=i

λk,j , i = 1, 2, 3.

Since λk,1, λk,2, . . . , λk,d are strictly positive, the eigenvalues of ΛESk are strictly
positive, when 1 + (d − 1)µ̃k and 1 − µ̃k are positive. Since we restricted µ̃k to
− 1
d−1 ≤ µ̃k ≤ 1, ΛESk is strictly positive.
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8.2.1 Conservation properties

Conservation of the number of particles and total momentum of the BGK model
for mixtures described in section 8.1 are shown in the same way as in the case of
mono-atomic molecules. In the extension described in section 8.2 these conservation
properties are still satisfied since G1 and G2 have the same density, mean velocity and
internal energy as f1 and f2, respectively. Conservation of the number of particles and
of total momentum are guaranteed by the following choice of the mixture parameters:

If we assume that

n12 = n1 and n21 = n2, (8.18)

we have conservation of the number of particles, see theorem 2.1.1. If we further
assume that u12 is a linear combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R, (8.19)

then we have conservation of total momentum provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1), (8.20)

see theorem 2.1.2.
In the case of total energy we have a difference for the polyatomic case compared

to the mono-atomic one. So we explicitly consider this in the following theorem.

Theorem 8.2.3 (Conservation of total energy). Assume (8.4), conditions (8.18),
(8.19) and (8.20) and assume that Λ12 and Θ12 are of the following form

Λ12 = αΛ1 + (1− α)Λ2 + γ|u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0.

Θ12 =
l1Θ1 + l2Θ2

l1 + l2
.

(8.21)

Then we have conservation of total energy∫
m1

2
(|v|2 + |ηl1 |2)(Q11(f1, f1) +Q12(f1, f2))dvdηl1

+

∫
m2

2
(|v|2 + |ηl2 |2)(Q22(f2, f2) +Q21(f2, f1))dvdηl2 = 0,

provided that

Λ21 +
l2
d

Θ21 =

[
1

d
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1− α)Λ1 + (1− ε(1− α))Λ2 +
1

d
ε
l1l2
l1 + l2

Θ1 +
1

d

(
l2 − ε

l1l2
l1 + l2

)
Θ2.

(8.22)
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Proof. Using the energy exchange of species 1 and equation (8.5), we obtain

FE1,2
: =

∫
m1

2
(|v|2 + |ηl1 |2)ν11n1(G1 − f1)dvdηl1

+

∫
m1

2
(|v|2 + |ηl1 |2)ν12n2(M12 − f1)dvdηl1

= εν21
1

2
n2n1m1(|u12|2 − |u1|2) +

d

2
εν21n1n2(Λ12 − T trans1 )

+
l1
2
εν21n1n2(Θ12 − T rot1 )

= εν21
1

2
n2n1m1(|u12|2 − |u1|2) +

d

2
εν21n1n2(Λ12 − Λ1)

+
l1
2
εν21n1n2(Θ12 −Θ1).

Next, we will insert the definitions of u12, Λ12 and Θ12 given by (8.19) and (8.21).
Analogously the energy exchange of species 2 towards 1 is

FE2,1 = ν21
1

2
n2n1m2(|u21|2 − |u2|2) +

d

2
ν21n1n2(Λ21 − Λ2) +

l2
2
ν21n1n2(Θ21 −Θ2).

Substitute u21 with (8.20) and Λ21 + l2
d Θ21 from (8.22). This permits to rewrite the

energy exchange as

FE1,2 = εν21
1

2
n2n1m1

[
(δ2 − 1)|u1|2 + (1− δ)2|u2|2 + 2δ(1− δ)u1 · u2

]
+

1

2
εν21n1n2

[
(1− α)d(Λ2 − Λ1) +

l1l2
l1 + l2

(Θ2 −Θ1) + γd|u1 − u2|2
]
,

(8.23)

FE2,1
=

1

2
ν21m2n1n2

[(
(1− m1

m2
ε(1− δ))2 − 1

)
|u2|2 +

(
m1

m2
ε(δ − 1)

)2

|u1|2

+2(1− m1

m2
ε(1− δ))m1

m2
ε(1− δ)u1 · u2

]
+

1

2
ν21n1n2

[
ε(1− α)d(Λ1 − Λ2)

+ε
l1l2
l1 + l2

(Θ1 −Θ2) +

(
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγd

)
|u1 − u2|2

]
.

(8.24)

Adding these two terms, we see that the total energy is conserved.

Remark 8.2.1. Since we assumed η̄l1 = η̄l2 = 0, we expect no exchange terms of
the form η̄l2 − η̄l1 in the momentum equation or a corresponding internal energy
exchange in the energy equation. Furthermore, for this reason, we did not add a
term of the form |η̄l1 − η̄l2 |2 in the definitions of the mixture temperatures (8.21).

Remark 8.2.2. The energy flux between the two species is zero if and only if u1 = u2,
Λ1 = Λ2, Θ1 = Θ2 provided that α, δ < 1 and γ > 0.
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8 Application to polyatomic mixtures

From conservation of total energy we get only one condition on Λ21 + l2
d Θ21 given

by (8.22), but not an explicit formula for Λ21 and Θ21. In order to keep the model
symmetric we again separate the temperatures corresponding to the translational
part and the one corresponding to the rotational and vibrational part and choose

Λ21 = ε(1− α)Λ1 + (1− ε(1− α))Λ2

+

[
1

d
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2,

(8.25)

Θ21 =

(
1− ε l1

l1 + l2

)
Θ2 + ε

l1
l1 + l2

Θ1. (8.26)

Remark 8.2.3. If l1 = l2, we have Θ12 = 1
2 (Θ1 + Θ2). We then find Θ21 = Θ12 if the

two species have the same interspecies collision frequency (ε = 1).

Remark 8.2.4. The fact that we only consider the two species case is just for simplicity.
We can also extend the model to more than two species, because we assume that we
only have binary interactions. So if we consider collision terms given by

νiini(Gi − fi) +

N∑
j 6=i

νijnj(Gij − fi), i = 1, ..., N,

we expect that we have conservation of total momentum and total energy in every
interaction of species i with species j. This means we require∫ (

v
v2

)
νijnj(Gij − fi)dv +

∫ (
v
v2

)
νjini(Gji − fj)dv = 0,

for every i, j = 1, ...N, i 6= j and so it reduces to the two species case.

8.2.2 Positivity of the temperatures

Theorem 8.2.4. Assume that f1(x, v, ηl1 , t), f2(x, v, ηl2 , t) > 0. Then all temperatures
Λ1, Λ2, Θ1, Θ2, Λ12, Θ12 given by (8.21), and Λ21, Θ21 determined by (8.25), (8.26)
are positive provided that

0 ≤ γ ≤ m1

d
(1− δ)

[(
1 +

m1

m2
ε

)
δ + 1− m1

m2
ε

]
. (8.27)

Proof. The temperatures Λ1,Λ2,Θ1,Θ2,Λ12,Θ12 and Θ21 are positive by definition
because they are integrals of positive functions. Thus, the only thing is to check the
temperature Λ21 in (8.25). This is done in theorem 2.1.4 for d = 3, so we skip the
proof here. The resulting condition is given by (8.27).

Remark 8.2.5. Since γ ≥ 0 the right-hand side of the inequality in (8.27) must be
non-negative. This condition is equivalent to

m1

m2
ε− 1

1 + m1

m2
ε
≤ δ ≤ 1. (8.28)
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8.2.3 The structure of equilibrium

Theorem 8.2.5 (Equilibrium). Assume f1, f2 > 0 and the conditions (8.18), (8.19),
(8.20), (8.21) and (8.22), δ 6= 1, α 6= 1, l1, l2 6= 0, the positivity of all temperatures.
Then, if f1 and f2 are independent of x and t; f1 and f2 are Maxwell distributions with
equal mean velocities u1 = u2 = u12 = u21 and temperatures T rot1 = T rot2 = T trans1 =
T trans2 = Λ1 = Λ2 = Θ1 = Θ2 = Θ12 = Θ21 = Λ12 = Λ21.

Proof. Equilibrium means that f1, f2,Λ1,Λ2,Θ1,Θ2 are independent of x and t. Thus,
in the situation of equilibrium the right-hand side of the equations (8.17) and (8.11)
have to be zero. From this condition on (8.17) we can deduce

(ν11n1 + ν12n2)f1 = ν11n1G1 + ν12n2M12, (8.29)

(ν22n2 + ν21n1)f2 = ν22n2G2 + ν21n1M21. (8.30)

Since the right-hand side of (8.17) and the right-hand side of (8.11) have to be zero,
the difference of the right-hand side of (8.17) and the right-hand side of (8.11) has
to be equal to zero. If we compute the translational temperature of this difference,
we obtain

Λten1 = T ten1 , (8.31)

Λten2 = T ten2 . (8.32)

Especially, from the diagonal part of (8.31) and (8.32) we can deduce

Λ1 = Θ1, (8.33)

Λ2 = Θ2. (8.34)

When we consider the moment of the velocity of (8.29), we get

(ν11n1 + ν12n2)u1 = ν11n1u1 + ν12n2u12,

which is equivalent to

u1 = u2, (8.35)

for δ 6= 1. When we consider the moments of the translational and the rotational/
vibrational temperatures of (8.29) and (8.30), we get

(ν11n1 + ν12n2)T trans1 = (ν11n1 + ν12n2α)Λ1 + ν12n2(1− α)Λ2, (8.36)

(ν11n1 + ν12n2)T rot1 = (ν11n1 + ν12n2
l1

l1 + l2
)Λ1 + ν12n2

l2
l1 + l2

Λ2, (8.37)

(ν22n2 + ν21n1)T trans2 = ν22n2Λ2 + ν21n1Λ21, (8.38)

(ν22n2 + ν21n1)T rot2 = ν22n2Λ2 + ν21n1Θ21. (8.39)

To arrive at these equations, we used the definitions of the mixture velocities and
temperatures (8.18), (8.19), (8.20), (8.21) and equations (8.33), (8.34) and (8.35).
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Using (8.33), (8.34) and (8.35), the temperatures of the mixture Maxwell distribu-
tions (8.21) and (8.25), (8.26) simplify to

Λ12 = αΛ1 + (1− α)Λ2, Θ12 =
l1

l1 + l2
Λ1 +

l2
l1 + l2

Λ2, (8.40)

Λ21 = ε(1− α)Λ1 + (1− ε(1− α))Λ2, Θ21 = ε
l1

l1 + l2
Λ1 +

(
1− ε l1

l1 + l2

)
Λ2.

(8.41)

Analogue, equations (8.5) simplify to

d+ l1
2

Λ1 =
d

2
T trans1 +

l1
2
T rot1 , (8.42)

d+ l2
2

Λ2 =
d

2
T trans2 +

l2
2
T rot2 . (8.43)

Inserting (8.36) and (8.37) in (8.42), we obtain

d

2

(ν11n1 + ν12n2α

ν11n1 + ν12n2
Λ1 +

ν12n2(1− α)

ν11n1 + ν12n2
Λ2

)
+
l1
2

(
ν11n1 + ν12n2

l1
l1+l2

ν11n1 + ν12n2
Λ1 +

ν12n2
l2

l1+l2

ν11n1 + ν12n2
Λ2

)
=
d+ l1

2
Λ1,

which, provided dα+ l1
l1

l1+l2
6= d+ l1, is equivalent to

Λ1 = Λ2. (8.44)

This condition is equivalent to d(1 − α) + l1l2
l1+l2

6= 0 which is satisfied since α 6=
1, l1, l2 6= 0. With (8.44) we can deduce from (8.36) and (8.37) that

T trans1 = Λ1 and T rot1 = Λ1. (8.45)

Condition (8.41) together with (8.44) leads to

Λ21 = Θ21 = Λ1. (8.46)

Inserting (8.44) and (8.46) in (8.38) and (8.39) leads to

T trans2 = T rot2 = Λ1.

If we compute the pressure tensor of (8.29) using that all temperatures are equal to
Λ1 we obtain

(ν11n1 + ν12n2)
P1

n1
= ν11n1(1− µ̃1)Λ11 + ν11n1µ̃1Λten1 + ν12n2Λ11.

Using (8.15), (8.31) and (8.45), we have that

d

d+ lk

P1

n1
+

lk
d+ lk

Λrot1 1d = Λten1 = T ten1
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and therefore

(ν11n1(1− µ̃1
d

d+ lk
) + ν12n2)

P1

n1
= (ν11n1(1− µ̃1

d

d+ lk
) + ν12n2)Λ11,

which shows that the pressure tensor of f1 is diagonal since µ̃1 ≤ 1. Similar for P2

n2

using (8.30), (8.32) and (8.45).
So all in all, in equilibrium we get that f1 and f2 are Maxwell distributions with equal
mean velocities u1 = u2 = u12 = u21 and temperatures T rot1 = T rot2 = T trans1 =
T trans2 = Λ1 = Λ2 = Θ1 = Θ2 = Θ12 = Θ21 = Λ12 = Λ21.

Definition 8.2.1. If f1 and f2 are Maxwell distributions with equal mean velocities
u1 = u2 = u12 = u21 and temperatures T rot1 = T rot2 = T trans1 = T trans2 = Λ1 =
Λ2 = Θ1 = Θ2 = Θ12 = Θ21 = Λ12 = Λ21, then we say that f1 and f2 are in local
equilibrium.

8.2.4 H-Theorem

In this section we will prove that our model admits an entropy with an entropy
inequality. For this, we have to prove an inequality on the term

∫
ln fk(Gk−fk)dvdηlk

coupled with ln Ĝk times the right-hand side of equation (8.11) and an inequality
on ν12n2

∫
(M12 − f1) ln f1dvdηl1 + ν21n1

∫
(M21 − f2) ln f2dvdηl2 coupled with ln Ĝ

times the right-hand side of equation (8.11). We prove the first one in section 8.2.4
and the second one in section 8.2.4.

H-theorem for the one species relaxation term

Remark 8.2.6. From the definition of the moments of fk, k = 1, 2 in (8.1) and the
definitions of the extended Maxwell distributions Gk, k = 1, 2 in (8.14), we see
that the pressure tensors and the temperatures do not coincide. Now, we consider
extended Maxwell distributions Ḡk, k = 1, 2 which have the same pressure tensor
and temperatures as fk, k = 1, 2. Then from the case of one species ES-BGK model
we know that ∫

Ḡk ln Ḡkdvdηlk ≤
∫
fk ln fkdvdηlk ,

for k = 1, 2, see equations (20) and (21) in [3] in the mono-atomic case. The
polyatomic case is analogous to the mono-atomic case.

Lemma 8.2.6. Assume that f1, f2 > 0. As in remark 8.2.6 let Ḡk be the extended
Maxwell distributions with the same pressure tensor and temperatures as fk, k = 1, 2
and G̃ the extended Maxwell distribution defined by (8.12). Then we have∫

G̃k ln G̃kdvdηlk ≤
∫
Ḡk ln Ḡkdvdηlk , k = 1, 2,∫

Ĝk ln Ĝkdvdηlk ≥
∫
Gk lnGkdvηlk , k = 1, 2,∫

Gk lnGkdvdηlk ≥
∫
Mk lnMkdvηlk , k = 1, 2.
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8 Application to polyatomic mixtures

Proof. The proof of the second inequality is analogously to the proof in the mono-
atomic case of equation (21) in [3]. So we only prove the first and the third one.

Using that lnMk = ln( nk√
2π

Λk
mk

d
1√

2π
Θk
mk

lk
)− |v−uk|

2

2
Λk
mk

− |ηlk |
2

2
Θk
mk

,

ln Ḡk = ln( nk√
det(2π

Pk
mk

)

1√
2π

Trot
k
mk

lk
)− 1

2 (v − uk) ·
(

Pk
mk

)−1

· (v − uk)− |ηlk |
2

2
Trot
k
mk

,

ln G̃k = ln( nk√
det(2π

Tten
k
mk

)

1√
2π

Tk
mk

lk
)− 1

2 (v − uk) ·
(
T tenk

mk

)−1

· (v − uk)− |ηlk |
2

2
Tk
mk

,

and lnGk = ln( nk√
det(2π

ΛES
k
mk

)

1√
2π

Θk
mk

lk
)− 1

2mk(v − uk) · (ΛESk )−1 · (v − uk)− |ηlk |
2

2
Θk
mk

,

we compute the integrals and obtain that the required inequalities are equivalent to

ln(
nk√

det(2π
T tenk

mk
)

1√
2π Tk

mk

lk
) ≤ ln(

nk√
det(2π Pk

mk
)

1√
2π

T rotk

mk

lk
),

ln(
nk√

det(2π
ΛESk
mk

)
) ≥ ln(

nk√
2π Λk

mk

d
).

This is equivalent to the conditions

ln det(T tenk ) + lk lnTk ≥ ln detPk + lk lnT rotk ,

(Λk)d ≥ det(ΛESk ).
(8.47)

We first look at the first inequality. If we insert the expression for Tk given by (8.9)
and use the concavity of ln, we obtain

ln det(T tenk ) + lk
lk

d+ lk
lnT rotk + lk

d

d+ lk
lnT transk ≥ ln detPk + lk lnT rotk . (8.48)

Now we use the Brunn-Minkowsky inequality (see section 7.5). Since we can write
T tenk as

T tenk =
d

d+ lk
Pk +

lk
d+ lk

T rotk 1d,

we can apply the Brunn-Minkowsky inequality on (8.48) and obtain

d

d+ lk
ln detPk + d

lk
d+ lk

lnT rotk + lk
lk

d+ lk
lnT rotk + lk

d

d+ lk
lnT transk

≥ ln detPk + lk lnT rotk .

So it remains to show that
(T transk )d ≥ detPk.

This inequality has the same structure as the second inequality in (8.47). So we only
prove the second inequality in (8.47). We observe that Tr(ΛESk ) = dΛk, so we have
to show (

Tr(ΛESk )

d

)d
≥ det(ΛESk ).
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8.2 Extension to an ES-BGK model

Let λ1, . . . , λd be the eigenvalues of the symmetric positive matrix ΛESk , then this
inequality is equivalent to (

λ1 + · · ·+ λd
d

)d
≥ λ1 · · ·λd.

This is true since it is the inequality of arithmetic and geometric means, see theorem
A.1.5 in the appendix.

Lemma 8.2.7 (H-theorem for one species). Assume f1, f2 > 0. Then∫
ln fk(Gk − fk)dvdηlk +

∫
ln Ĝk(G̃k − Ĝk)dvdηlk ≤ 0, k = 1, 2,

with equality if and only if Mk = fk and Λk = Θk = T rotk = T transk .

Proof. Apply lemma 1.3.12 on both terms of

Sk(fk) :=

∫
ln fk(Gk − fk)dvdηlk +

∫
ln Ĝk(G̃k − Ĝk)dvdηlk .

Then we obtain

Sk(fk) ≤
∫
Gk lnGkdvdηlk −

∫
fk ln fkdvdηlk −

∫
Gkdvdηlk +

∫
fkdvdηlk

+[

∫
G̃k ln G̃kdvdηlk −

∫
Ĝk ln Ĝkdvdηlk −

∫
G̃kdvdηlk +

∫
Ĝkdvdηlk ],

with equality if and only if fk = Gk andGk = G̃k from which we can deduce fk = Mk

by computing macroscopic quantities of fk = Gk and Gk = G̃k. Since fk, Gk, Ĝk
and G̃k have the same density, we obtain

S(fk)≤
∫
Gk lnGkdvdηlk−

∫
fk ln fkdvdηlk+[

∫
G̃k ln G̃kdvdηlk−

∫
Ĝk ln Ĝkdvdηlk ]. (8.49)

According to the second part of lemma 8.2.6, we obtain

S(fk) ≤
∫
G̃k ln G̃kdvdηlk −

∫
fk ln fkdvdηlk .

Here we have equality if and only if Gk = G̃k, which means Λk = Θk. Now, using
the first part of lemma 8.2.6 and remark 8.2.6, we can estimate

∫
G̃k ln G̃kdvdηlk

by
∫
fk ln fkdvdηlk . So, all in all, we obtain Sk(fk) ≤ 0 with equality if and only if

fk = Mk and Λk = Θk = T rotk = T transk .
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8 Application to polyatomic mixtures

H-theorem for the mixture of polyatomic molecules

Lemma 8.2.8. Assume f1, f2 > 0, the relationship between the collision frequencies
(8.4), the conditions for the interspecies Maxwell distributions (8.18), (8.19), (8.20),
(8.21) and (8.22) and the positivity of all temperatures, then

ε d2 ln Λ12+ε
l1
2 ln Θ12+ d

2 ln Λ21+
l2
2 ln Θ21≥ d2 ε ln Λ1+ d

2 ln Λ2+
l1
2 ε ln Θ1+

l2
2 ln Θ2. (8.50)

Proof. First we consider the part E1 := d
2 ln Λ12 + l1

2 ln Θ12. We insert the definitions
of Λ12 and Θ12 into E1 and use the monotonicity of ln to drop the velocity term.
Then we obtain

E1 ≥
d

2
ln(αΛ1 + (1− α)Λ2) +

l1
2

ln(
l1

l1 + l2
Θ1 +

l2
l1 + l2

Θ2).

Now we use that ln is concave and get

E1 ≥
d

2
α ln Λ1 +

d

2
(1− α) ln Λ2 +

l1
2

l1
l1 + l2

ln Θ1 +
l1
2

l2
l1 + l2

ln Θ2. (8.51)

Doing the same with the second part E2 := d
2 ln Λ21 + l2

2 ln Θ21 using that l1
l1+l2

ε ≤ 1,
we obtain

E2≥ d2 ε(1−α) ln Λ1+ d
2 (1−ε(1−α)) ln Λ2+

l2
2 ε

l1
l1+l2

ln Θ1+
l2
2 (1−ε l1

l1+l2
) ln Θ2. (8.52)

Multiplying (8.51) by ε and adding (8.52), we get

εE1 + E2 ≥
d

2
ε ln Λ1 +

d

2
ln Λ2 +

l1
2
ε ln Θ1 +

l2
2

ln Θ2,

which is the required inequality.

Lemma 8.2.9. Assume f1, f2 > 0. Assume the relationship between the collision
frequencies (8.4), the conditions for the interspecies Maxwell distributions (8.18), (8.19),
(8.20), (8.21) and (8.22) and the positivity of all temperatures. Then

ν12n2

∫
M12 lnM12dvdηl1 + ν21n1

∫
M21 lnM21dvdηl2

≤ ν12n2

∫
M1 lnM1dvdηl1 + ν21n1

∫
M2 lnM2dvdηl2 .

Proof. Using that lnM12 = ln

(
n2√

2π
Λ12
m1

d
1√

2π
Θ12
m1

l1

)
− |v−u12|2

2
Λ12
m1

− |ηl1 |
2

2
Θ12
m1

,

lnM21 = ln

(
n1√

2π
Λ21
m2

d
1√

2π
Θ21
m2

l2

)
− |v−u21|2

2
Λ21
m2

− |ηl2 |
2

2
Θ21
m2

,
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8.2 Extension to an ES-BGK model

lnMk = ln

(
nk√

2π
Λk
mk

d
1√

2π
Θk
mk

lk

)
− |v−uk|

2

2
Λk
mk

− |ηlk |
2

2
Θk
mk

, k = 1, 2, we compute the integrals

and obtain that the required inequalities are equivalent to

ε ln

 n1√
2πΛ12

m1

d

1√
2πΘ12

m1

l1

+ ln

 n2√
2πΛ21

m2

d

1√
2πΘ21

m2

l2


≤ ε ln

 n1√
2π Λ1

m1

d

1√
2π Θ1

m1

l1

+ ln

 n2√
2π Λ2

m2

d

1√
2π Θ2

m2

l2

 ,

which is equivalent to the condition proven in lemma 8.2.8.

Theorem 8.2.10 (H-theorem for mixture). Assume f1, f2 > 0. Assume ν11n1 ≥ ν12n2,
ν22n2 ≥ ν21n1, α, δ 6= 1, l1, l2 6= 0. Assume the relationship between the collision
frequencies (8.4), the conditions for the interspecies Maxwell distributions (8.18), (8.19),
(8.20), (8.21) and (8.22) and the positivity of all temperatures, then

2∑
k=1

[νkknk

∫
(Gk − fk) ln fkdvdηlk + νkknk

∫
(G̃k − Ĝk) ln Ĝkdvdηlk ]

+ν11n1

∫
(G̃1 − Ĝ1) ln Ĝ1dvdηl1 + ν22n2

∫
(G̃2 − Ĝ2) ln Ĝ2dvdηl2

+ν12n2

∫
(M12 − f1) ln f1dvdηl1 + ν21n1

∫
(M21 − f2) ln f2dvdηl2 ≤ 0,

with equality if and only if f1 and f2 are in local equilibrium (see definition 8.2.1).

Remark 8.2.7. The inequality in the H-theorem is still true if l1 = 0 or l2 = 0 which
means that one species is mono-atomic. In this case only the equalities with Θ1 and
Θ2, respectively in the local equilibrium vanish.

Proof. The fact that νkknk
∫

(Gk − fk) ln fkdvdηlk + νkknk
∫

(G̃k − Ĝk) ln Ĝkdvdηlk ≤
0, k = 1, 2 is shown in lemma 8.2.7. In both cases we have equality if and only if
f1 = G1 with Λ1 = Θ1 = T trans1 = T rot1 and f2 = G2 with Λ2 = Θ2 = T trans2 = T rot2 .
Let us define

S(f1, f2) := ν11n1

∫
(G̃1 − Ĝ1) ln Ĝ1dvdηl1 + ν22n2

∫
(G̃2 − Ĝ2) ln Ĝ2dvdηl2

+ν12n2

∫
(M12 − f1) ln f1dvdηl1 + ν21n1

∫
(M21 − f2) ln f2dvdηl2 .
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8 Application to polyatomic mixtures

The task is to prove that S(f1, f2) ≤ 0. Consider now S(f1, f2) and apply the
inequality from lemma 1.3.12 to each of the terms in S.

S ≤ ν11n1[

∫
G̃1 ln G̃1dvdηl1 −

∫
Ĝ1 ln Ĝ1dvdηl1 +

∫
Ĝ1dvdηl1 −

∫
G̃1dvdηl1 ]

+ν12n2[

∫
M12 lnM12dvdηl1 −

∫
f1 ln f1dvdηl1 +

∫
f1dvη −

∫
M12dvdηl1 ]

+ν21n1[

∫
M21 lnM21dvdηl2 −

∫
f2 ln f2dvdηl2 +

∫
f2dvdη −

∫
M21dvdηl2 ]

+ν22n2[

∫
G̃2 ln G̃2dvdηl2 −

∫
Ĝ2 ln Ĝ2dvdηl2 +

∫
Ĝ2dvdηl2 −

∫
G̃2dvdηl2 ],

with equality if and only if f1 = M12, f2 = M21, G̃1 = Ĝ1 and G̃2 = Ĝ2. Combining
this with the condition for equality of the single collision term f1 = G1 with Λ1 =
Θ1 = T trans1 = T rot1 and f2 = G2 with Λ2 = Θ2 = T trans2 = T rot2 , we get that we
have equality if and only if we are in local equilibrium (see definition 8.2.1). Since
Ĝ1, G̃1, f1 and M12 have the same density and Ĝ2, G̃2,M21 and f2 have the same
density, too, the right-hand side reduces to

S ≤ ν11n1[

∫
G̃1 ln G̃1dvdηl1 −

∫
Ĝ1 ln Ĝ1dvdηl1 ]

+ν12n2[

∫
M12 lnM12dvdηl1 −

∫
f1 ln f1dvdηl1 ]

+ν21n1[

∫
M21 lnM21dvdηl2 −

∫
f2 ln f2dvdηl2 ]

+ν22n2[

∫
G̃2 ln G̃2dvdηl2 −

∫
Ĝ2 ln Ĝ2dvdηl2 ].

According to the second part of lemma 8.2.6, we obtain

S ≤ ν11n1[

∫
G̃1 ln G̃1dvdηl1 −

∫
G1 lnG1dvdηl1 ]

+ν12n2[

∫
M12 lnM12dvdηl1 −

∫
f1 ln f1dvdηl1 ]

+ν21n1[

∫
M21 lnM21dvdηl2 −

∫
f2 ln f2dvdηl2 ]

+ν22n2[

∫
G̃2 ln G̃2dvdηl2 −

∫
G2 lnG2dvdηl2 ].
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8.2 Extension to an ES-BGK model

According to lemma 8.2.9, the last part of lemma 8.2.6 and the assumption that
νkknk ≥ νkjnj , k, j = 1, 2, k 6= j, we get

S ≤ ν11n1[

∫
G̃1 ln G̃1dvdηl1 −

∫
G1 lnG1dvdηl1 ]

+ ν12n2[

∫
G1 lnG1dvdηl1 −

∫
f1 ln f1dvdηl1 ]

+ ν21n1[

∫
G2 lnG2dvdηl2 −

∫
f2 ln f2dvdηl2 ]

+ ν22n2[

∫
G̃2 ln G̃2dvdηl2 −

∫
G2 lnG2dvdηl2 ]

≤ ν12n2[

∫
G̃1 ln G̃1dvdηl1 −

∫
f1 ln f1dvdηl1 ]

+ ν21n1[

∫
G̃2 ln G̃2dvdηl2 −

∫
f2 ln f2dvdηl2 ],

which leads to S ≤ 0 using the first part of lemma 8.2.6 and remark 8.2.6.

Define 1
zk

:= 1
Zrk

d+lk
d , k = 1, 2 and the total entropy

H(f1, f2) =

∫
(f1 ln f1 + 2z1Ĝ1 ln Ĝ1)dvdηl1 +

∫
(f2 ln f2 + 2z2Ĝ2 ln Ĝ2)dvdηl2 .

We can compute

∂tH(f1, f2) +∇x ·
∫

(f1 ln f1 + 2z1Ĝ1 ln Ĝ1)vdvdηl1

+∇x ·
∫

(f2 ln f2 + 2z2Ĝ2 ln Ĝ2)vdvdηl2 = S(f1, f2) +R(f1, f2),

by multiplying the BGK equation for species 1 by ln f1, the BGK equation for the
species 2 by ln f2, the equations (8.11) by 2zk lnGk and add the integrals with respect
to v and ηl1 and ηl2 , respectively. The remaining term R(f1, f2) can be bounded by
zero from below by an explicit computation assuming that Λk and Θk are bounded
from below and above and assume that T rotk ≥ C̃Θk for an appropriate C̃ and zk
small enough. The additional estimate T rotk ≥ C̃Θk helps to indicate how to choose
the initial data of the artificial temperature Θk.

Corollary 8.2.11 (Entropy inequality for mixtures). Assume f1, f2 > 0, Λk and Θk

are bounded from below and above and T rotk ≥ C̃Θk for an appropriate C̃ and zk small
enough. Assume relationship (8.4), the conditions (8.18), (8.19), (8.20), (8.21) and
(8.22) and the positivity of all temperatures (8.27), then we have the following entropy
inequality

∂t (H(f1, f2)) +∇x ·
(∫

v(f1 ln f1 + 2z1Ĝ1 ln Ĝ1 + f2 ln f2 + 2z2Ĝ2 ln Ĝ2)dvdηl2

)
≤ 0

with equality if and only if f1 and f2 are in local equilibrium (see definition 8.2.1).
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Remark 8.2.8. By computing the integrals
∫
Ĝk ln Ĝkdvdηlk for k = 1, 2, and∫

vĜk ln Ĝkdvdηlk , we see that

∂t[

∫
Ĝ1 ln Ĝ1dvdηl1 +

∫
Ĝ2 ln Ĝ2dvdηl2 ] +∇x · [

∫
v(Ĝ1 ln Ĝ1 + Ĝ2 ln Ĝ2)dvdηl2 ] ≤ 0,

is equivalent to

∂t(det(Λten1 )Θl1
1 + det(Λten2 )Θl2

2 ) +∇x · ((det(Λten1 )Θl1
1 + det(Λten2 )Θl2

2 )uk) ≤ 0.

Hence, we could also consider the entropy

H(f1, f2) =

2∑
k=1

∫
fk ln fkdvdηlk + z1 det(Λten1 )Θl1

1 + z2 det(Λten2 )Θl2
2 .

8.3 Comparison with the ES-BGK model of Andries, Le Tal-
lec, Perlat and Perthame for one species of polyatomic
molecules

We will now consider a different ES-BGK model for a single species ES-BGK model of
polyatomic molecules. In [2], a distribution function f(t, x, v, I) depending on the
position x ∈ R3, the velocity v ∈ R3 and internal energy ε(I) = I

2
δ , I ∈ R+ at time

t is considered. δ denotes the number of degrees of freedom in internal energy. In
[2], it is assumed that the mass of the particles is equal to 1. In the following, we
assume additionally that kB = 1 in this model. The density ρ and mean velocity u
are defined as n and u in the model described in the previous section but now the
integration is with respect to v and I instead of v and η. The energy is defined as

E(x, t) =

∫ ∫
(
1

2
|v|2 + I

δ
2 )fdvdI =

1

2
ρ|u|2 + ρe.

The specific internal energy can be divided into

etr =
1

ρ

∫ ∫
1

2
|v − u|2fdvdI,

eint =
1

ρ

∫ ∫
I

2
δ fdvdI,

and associate with this the corresponding temperatures

e = etr + eint =
3 + δ

2
Tequ,

etr =
3

2
Ttr,
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eint =
δ

2
Tint,

and define Trel = θTequ + (1− θ)Tint. In [2] the following generalized Gaussian for
the single species ES-BGK model is considered

G̃[f ] =
ρΛδ√

det(2πT )

1

T
δ
2

rel

exp

(
−1

2
(v − u) · T −1 · (v − u) +

I
δ
2

Trel

)
,

with the tensor T = (1− θ)((1− µ̃)Ttr1+ µ̃Θ) + θTequ1 where only the translational
part is replaced by a tensor. Θ denotes the pressure tensor, Λδ is a constant ensuring
that the integral of G̃[f ] with respect to v and I is equal to the density ρ. The convex
combination in θ takes into account that Ttr and Tint relax towards the common value
Tequ. In the space-homogeneous case we see that we get the following macroscopic
equations

∂tTtr = C(Ttr(1− θ) + θTequ − Ttr) = Cθ(Tequ − Ttr),
∂tTint = Cθ(Tequ − Tint),

with some coefficient C. These macroscopic equations describe a relaxation of Ttr
and Tint towards Tequ.

In this chapter, we took [14] as basis to extend it to mixtures. The main differences
of the model in [2] and the model in [14] are the following. The model in [2] has
one variable I ∈ R+ for all degrees of freedom in internal energy and the model in
[14] has one variable η ∈ RM to each degree of freedom in internal energy. Moreover,
the relaxation of the translational and rotational temperatures to a common value is
done in [2] by introducing a relaxation temperature Trel and in the model [14] it is
done by the additional relaxation equation (8.11).

8.4 Applications

In this section, we consider two applications of the polyatomic ES-BGK model pre-
sented in section 8.2. First, we apply the Chu reduction on our model in order to
reduce the complexity of this model for numerical purposes. Second, we consider a
gas mixture of one species of mono-atomic and one species of diatomic molecules.

8.4.1 Chu reduction

In the polyatomic setting the distribution functions fk depend on 2d+ lk + 1 inde-
pendent variables. This makes the problem extremely complex from a computational
point of view, due to its high dimensionality. However, it is possible to reduce the
number of dimensions of the distribution function with Chu’s reduction, proposed
in [27]. In the standard BGK model, Chu’s reduction can be applied whenever the
distribution function fk depends only on r < d degrees of freedom in space. Then it
is possible to rewrite the kinetic equation using only r degrees of freedom, also in
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8 Application to polyatomic mixtures

the microscopic velocity space. In order to reduce the complexity of the variables
for rotational and vibrational energy degrees of freedom µ1, ..., µlk we apply the
Chu reduction in the polyatomic case. We will apply the reduction to aggregate the
internal energy degrees of freedom. Let us consider the case in which we want to
reduce the M rotational and vibrational degrees of freedom, while the system has
d translational degrees of freedom. It is possible to apply the Chu reduction since
η1, ..., ηlk do not appear in the transport operators on (8.2). We consider the system
of equations

∂tf1 + v · ∇xf1 = ν11n1(G1 − f1) + ν12n2(M12 − f1),

∂tf2 + v · ∇xf2 = ν22n2(G2 − f2) + ν21n1(M21 − f2).

Consider the reduced functions

g1 =

∫
f1dηl1 , g2 =

∫
f2dηl2 .

Then they satisfy the equations

∂tg1 + v · ∇xg1 = ν11n1(G̃1 − g1) + ν12n2(M̃12 − g1),

∂tg2 + v · ∇xg2 = ν22n2(G̃2 − g2) + ν21n1(M̃21 − g2),

where G̃1, G̃2, M̃12 and M̃21 are given by

G̃1 =

∫
G1dηl1 , M̃12 =

∫
M12dηl1 ,

G̃2 =

∫
G2dηl2 , M̃21 =

∫
M21dηl2 .

It is possible to compute the densities

n1 =

∫ ∫
f1dηl1dv =

∫
g1dv,

n2 =

∫ ∫
f2dηl2dv =

∫
g2dv,

the velocities

u1 =

∫ ∫
vf1dηl1dv =

∫
vg1dv,

u2 =

∫ ∫
vf2dηl2dv =

∫
vg2dv,
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the temperatures

Λ1 =
1

n1

∫ ∫
|v − u1|2f1dηl1dv,=

1

n1

∫
|v − u1|2g1dv

Λ2 =
1

n2

∫
|v − u2|2g2dv,

Θ1 =
1

n1

∫ ∫
|ηl1 |2f1dηl1dv =

1

n1

∫
|ηl1 |2h1dv,

Θ2 =
1

n2

∫
|ηl2 |2h2dv,

if we define the reduced functions

h1 =

∫
|ηl1 |2f1dηl1 , h2 =

∫
|ηl2 |2f2dηl2 ,

which solve the equations

∂th1 + v · ∇xh1 = ν11n1(
˜̃
G1 − h1) + ν12n2(

˜̃
M12 − h1),

∂th2 + v · ∇xh2 = ν22n2(
˜̃
G2 − h2) + ν21n1(

˜̃
M21 − h2),

where ˜̃G1,
˜̃
G2,

˜̃
M12 and ˜̃M21 are given by

˜̃
G1 =

∫
|ηl1 |2G1dηl1 ,

˜̃
M12 =

∫
|ηl1 |2M12dη,

˜̃
G2 =

∫
|ηl2 |2G2dηl2 ,

˜̃
M21 =

∫
|ηl2 |2M21dηl2 .

If we compute G̃k, M̃12, M̃21, ˜̃Gk, M̃12, M̃21 for k = 1, 2, we get

G̃k(x, v, t) =
nk√

det(2π
ΛESk
mk

)
exp(−mk(v − uk)(ΛESk )−1 · (v − uk)), k = 1, 2,

M̃12(x, v, t) =
n1√

2πΛ12

m1

d
exp

(
−|v − u12|2

2Λ12

m1

)
,

M̃21(x, v, t) =
n2√

2πΛ21

m2

d
exp

(
−|v − u21|2

2Λ21

m2

)
,

183
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˜̃
Gk(x, v, t) =

nk√
det(2π

ΛESk
mk

)
exp(−mk(v − uk)(ΛESk )−1 · (v − uk))Θk, k = 1, 2,

˜̃
M12(x, v, t) =

n1√
2πΛ12

m1

d
exp

(
−|v − u12|2

2Λ12

m1

)
Θ12,

˜̃
M21(x, v, t) =

n2√
2πΛ21

m2

d
exp

(
−|v − u21|2

2Λ21

m2

)
Θ21.

We are able to compute all the six Maxwell distributions because we can compute all
moments by the previous computation.

8.4.2 A mixture consisting of a mono-atomic and a diatomic gas

We consider now the special case of two species, one species is mono-atomic and
has only translational degrees of freedom l1 = 0, the other one is diatomic and
has in addition two rotational degrees of freedom l2 = 2 and both have a general
number of degrees of freedom in translations d ∈ N. In this case the total number of
rotational degrees of freedom is M = l1 + l2 = 2 since in sum we have two possible
rotations. Our variable for the rotational energy degrees of freedom are η ∈ R2,
ηl1 = (0, 0)T , ηl2 = η, since ηlk coincides with η in the components corresponding to
the rotational degrees of freedom of species k and is zero in the other components.
So our distribution function f1(x, v, t) of species 1 depends on x, v and t and our
distribution function f2(x, v, η, t) of species 2 depends on x, v, η and t. The moments
of f1 are given by

∫
f1(v)


1
v

m1|v − u1|2
m1(v − u1)⊗ (v − u1)

 dv =:


n1

n1u1

dn1T
trans
1

P1

 ,

and the moments of species 2 are given by

∫
f2(v, η)


1
v
η

m2|v − u2|2
m2|η|2

m2(v − u2)⊗ (v − u2)

 dvdη =:


n2

n2u2

0
dn2T

trans
2

l2n2T
rot
k

P2

 .

The third equality is an assumption. We could also define a general η̄ :=
∫
f2(v, η)ηdvdη.

Our model reduces to

∂tf1 + v · ∇xf1 = ν11n1(G1(f1)− f1) + ν12n2(M12(f1, f2)− f1),

∂tf2 + v · ∇xf2 = ν22n2(G2(f2)− f2) + ν21n1(M21(f1, f2)− f2),
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with the modified Maxwell distributions

G1(x, v, t) =
n1√

det(2π
ΛES1
m1

)

exp

(
−

1

2
(v − u1) ·

(
ΛES1

m1

)−1

· (v − u1)

)
,

G2(x, v, η, t) =
n2√

det(2π
ΛES2
m2

)

1√
2π

Θ2
m2

l2
exp

(
−

1

2
(v − u2) ·

(
ΛES2

m2

)−1

· (v − u2)−
1

2

m2|η|2

Θ2

)
,

M12(x, v, t) =
n12√

2π
Λ12
m1

d
exp

−|v − u12|2

2
Λ12
m1

 ,

M21(x, v, η, t) =
n21√

2π
Λ21
m2

d

1√
2π

Θ21
m2

l2
exp

−|v − u21|2

2
Λ21
m2

−
|η|2

2
Θ21
m2

 ,

where

ΛES1 = (1− µ̃1)T trans1 1n + µ̃1
P1

n1
,

ΛES2 = (1− µ̃2)Λ21n + µ̃2
Λten2

n2
,

with µ̃k ∈ R, k = 1, 2. For Λten2 we use the additional relaxation equation

∂tĜ2 + v · ∇xĜ2 =
ν22n2

Z2
r

d+ 2

d
(G̃2 − Ĝ2) + ν22n2(G2 − f2) + ν21n1(M21 − f2).

(8.53)

Here Ĝ2 is given by

Ĝ2 =
n2√

det(2πΛten2 )
exp

(
−1

2
(v − u2) ·

(
Λten2

m2

)−1

· (v − u2)− m2|η|2

2T rot2

)
, (8.54)

and G̃2 is given by

G̃2 =
n2√

det(2π
T ten2
m2

)

1√
2π T2

m2

2 exp

(
−1

2
(v − u2) ·

(
T ten2

m2

)−1

· (v − u2)− 1

2

m2|η|2

T2

)
,

where the components of T ten2 are defined in the following way

(T ten2 )ii = T2 :=
d

d+ 2
Λ2 +

2

d+ 2
Θ2 for i = 1, . . . d,

(T ten2 )ij =
d

d+ 2
(P2)ij for i, j = 1, . . . d, i 6= j.

(8.55)

We couple this with conservation of internal energy of species 2

d

2
n2Λ2 =

d

2
n2T

trans
2 +

l2
2
n2T

rot
2 − l2

2
n2Θ2.
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If we multiply (8.53) by |η|2, integrate with respect to v and η and use conservation
of mass, we obtain the following macroscopic equation

∂t(Λ
ten
2 ) + u2 · ∇x(Λten2 ) =

ν22n2

Z2
r

d+ 2

d
(T ten2 − Λten2 ) + ν22n2(ΛES2 − P2)

+ ν21n1(Θ12 − T rot2 ).

If we assume that

n12 = n1 and n21 = n2,

u12 = δu1 + (1− δ)u2, δ ∈ R,

and

Λ12 = αT trans1 + (1− α)Λ2 + γ|u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0,

we have conservation of mass, total momentum and total energy provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1),

Λ21 +
l2
d

Θ21 =

[
1

d
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1− α)T trans1 + (1− ε(1− α))Λ2 +
l2
d

Θ2.

We take into account the symmetry of the both temperatures and choose

Λ21 = ε(1− α)Λ1 + (1− ε(1− α))Λ2

+

[
1

d
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2,

Θ21 = Θ2.

8.5 A kinetic model leading to an equation of state differ-
ent from the ideal gas law

Let x ∈ R3 and v ∈ R3 be the phase space variables and t ≥ 0 the time. Let l the
number of rotational and vibrational degrees of freedom of the gas. Further, η ∈ Rl
is the variable for the internal energy degrees of freedom.

We consider a distribution function f(x, v, η, t) > 0. Furthermore, we relate the
distribution function to macroscopic quantities by mean-values of f as follows

∫
f(v, η)


1
v
η

m |v − u|2
m |η − η̄l|2

 dvdη =:


n
n u
n η̄l

3 n T trans

l n T rot

 , (8.56)
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where n is the number density, u the mean velocity and T trans the temperature of the
translation, T rot the temperature of the rotation and vibration. Note that we write
T trans and T rot instead of kBT trans and kBT rot, where kB is Boltzmann’s constant.

We consider the following model

∂tf + v · ∇xf = νn(M − f), (8.57)

with the Maxwell distribution

M(x, v, η, t) =
n√

2π Tm

3

1√
2π Tm

l
exp

(
−|v − u|

2

2 Tm
− |η − w|

2

2 Tm

)
, (8.58)

where T is the total equilibrium temperature and is given by

T :=
3T trans + lT rot

d+ l
. (8.59)

Now, assume that we assume that η̄l is fixed and equal to a vector w in Rl such that
|w|2 = 2 p∞mn for a given constant p∞ in the Maxwell distribution in (8.3). Since |w|2
represents the kinetic energy in the rotation and vibration, p∞ may be related to
the moment of inertia in the case of rotations or the Hook’sches law in the case of
vibrations. In this case, we will obtain an equation of state given by

p = nT + const.

This is shown in the following. The additional constant takes into account an
attractive force between the particles which is neglected in the case of an ideal gas.

Theorem 8.5.1 (Macroscopic equations). Assume f ∈ L∞(dvdη) decays fast enough
to zero in the v and η variables and is a solution to (8.57) in the sense of distributions.
If in addition f coincides with the Maxwell distribution M given by (8.58), it satisfies
the following local macroscopic conservation laws.

∂tn+∇x(nu) = 0

∂t(mnu) +∇x (nT ) +∇x · (mnu⊗ u) = 0,

∂t

(
m

2
n|u|2 +

3 + l

2
nT

)
+∇x ·

((
5 + l

2
nT + p∞

)
u

)
+∇x ·

(m
2
n|u|2u

)
= 0.

Proof. If we integrate the equation (8.57) with respect to v and η and use f = M ,
we get: ∫

∂tMdvdη +

∫
v · ∇xMdvdη = 0.

If we formally exchange integration and derivatives, we obtain

∂t

∫
Mdvdη +∇x ·

∫
vMdvdη = 0.
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This is equivalent to

∂tn+∇x · (nu) = 0,

since we have∫
Mdvdη =

∫
n√

2π T
m

3 exp

(
−|v − u|

2

2 T
m

)
dv

∫
1√

2π T
m

l
exp

(
−|η − w|

2

2 T
m

)
dη

= n

and ∫
Mvdvdη =

∫
v

n√
2π T

m

3 exp

(
−|v − u|

2

2 T
m

)
dv

∫
1√

2π T
m

l
exp

(
−|η − w|

2

2 T
m

)
dη

= nu.

Multiplying the equation (8.57) by mv, integrating it with respect to v and η and
using f = M , leads to

m

∫
v∂tMdvdη +m

∫
v v · ∇xMdvdη = 0.

We formally exchange derivative and integration and obtain

m ∂t(nu) +∇x ·
∫
mv ⊗ vMdvdη = 0.

We can compute∫
v ⊗ vMdvdη =

∫
v ⊗ v

n√
2π T

m

3
exp

(
−
|v − u|2

2 T
m

)
dv

∫
1√

2π T
m

l
exp

(
−
|η − w|2

2 T
m

)
dη

= nu⊗ u+ n
T

m
,

so the second term turns into

∇x(nT ) +∇x · (mnu⊗ u).

So all in all, we get

∂t(mnu) +∇x(nT ) +∇x · (mnu⊗ u) = 0.

Multiplying the equation (8.57) by m
2 (|v|2 + |η|2), integrating it with respect to v and

η and using f = M , leads to

m

2

∫
(|v|2 + |η|2)∂tMdvdη +

m

2

∫
(|v|2 + |η|2)v · ∇xMdvdη = 0.
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We formally exchange derivative and integration and obtain

∂t

(
m

2
n|u|2 +

3 + l

2
nT

)
+∇x ·

∫
mv(|v|2 + |η|2)Mdvdη = 0,

since we have

m

∫
(|v|2 + |η|2)Mdvdη =

mn|u|2

2
+

3

2
nT +

mn|w|2

2
+
l

2
nT

=
mn|u|2

2
+

3 + l

2
nT + p∞,

where p∞ is a constant, so its time derivative vanishes. Last, we compute

m

∫
v(|v|2 + |η|2)Mdvdη =

∫
|v|2vMdvdη +

∫
|η|2vMdvdη

=

(
mn

2
|u|2 +

5

2
nT

)
u

+

∫
v

n√
2π Tm

3 exp

(
−|v − u|

2

2 Tm

)
dv

∫
|η|2 1√

2π Tm

l
exp

(
−|η − w|

2

2 Tm

)
dη

=

(
m

2
n|u|2 +

5

2
nT

)
u+

(
l

2
nT + p∞

)
u

and obtain

∂t

(
m

2
n|u|2 +

3 + l

2
nT

)
+∇x ·

[(
mn

2
|u|2 +

5 + l

2
nT + p∞

)
u

]
= 0.

8.6 Existence, uniqueness and positivity of solutions

In this section we want to give some remarks to the existence, uniqueness and
positivity of mild solutions in the case of polyatomic molecules.

8.6.1 Existence and uniqueness for the single polyatomic BGK model

First of all, we want to consider the polyatomic BGK model in the case of one species.
So we consider the case when k = 1 in section 8.1. That means we have only
one species and in the following we omit the index k. The proof of existence and
uniqueness of non-negative solutions for polyatomic molecules is analogous to the
proof of existence and uniqueness for mono-atomic molecules. So we just sketch
the main differences in the proof compared to the mono-atomic case. We start with
the definition of mild solutions in the polyatomic BGK case for one species. We
assume that the collision frequency ν is equal to a constant ν̃ as in the existence and
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uniqueness proof in the mono-atomic case and denote the position space by Λpoly in
order to avoid confusion with the rotational and vibrational temperature Λ.

We observe that equation (8.6) for one species has not the same structure as
equation (8.2) for one species. In equation (8.2), we only have the Maxwell distribu-
tion M on the right-hand side after absorbing f into the left-hand side with the trick
described in section 4.1.1. This leads to the mild formulation as in definition 4.2.1
for one species, where we have only M in the integral. Whereas, in equation (8.6),
we also have an f on the right-hand side which we can not absorb into the left-hand
side. What we do is the following. We define g = (1− zr)M − f . Then g satisfies

∂tg + v · ∇xg = zrν̃[(1− zr)M̃ − g],

and then we consider the following mild formulation.

Definition 8.6.1. We call f,M with (1 + |v|2 + |η|2)f,M ∈ L1(dv), f,M ≥ 0 a mild
solution to (8.2), (8.6) under the conditions for the collision frequencies (4.11) if
and only if f satisfies

f(x, v, η, t) = e−α(t)f0(x− tv, v, η) + e−α(t)

∫ t

0
ν̃M(x+ (s− t)v, v, η, s)eα(s)ds,

g(x, v, η, t) = e−α̃(t)g0(x− vt, v, η) + e−α̃(t)

∫ t

0
ν̃zr(1− zr)M̃(x+ (s− t)v, v, η, s)eα̃(s)ds,

where α is given by

α(x, v, t) = ν̃t and α̃ = zr ν̃t

and

M =
g + f

1− zr
.

In order to prove existence and uniqueness, we have the following inequalities
for n, u, η̄ and T given by (8.9).

Remark 8.6.1. In the polyatomic case for one species we define ξ = (v, η), ξ̄ = (u, η̄)
and Nq(f) = supξ |ξ|qf . Then we have the following estimates which correspond to
the estimates (i.1) in theorem 4.3.1, (ii.1) in theorem 4.3.2, (iii.1) in theorem 4.3.4
and (iv.1) in consequences 4.3.5.

(i.1)* n

(T )
d+l
2

≤ CN0(f),

(ii.1)* n(T + |u|2 + |η̄|2)
q−d−l

2 ≤ CqNq(f), for q > d+ l + 2,

(iii.1)* n|ξ̄|d+l+q

[(T+|ξ̄|2)T ]
d+l
2

≤ CqNq(f), for q > 1.

(iv.1)* supξ |ξ|qM̃(f) ≤ CqNq(f) for q > N + 2 or q = 0.

These estimates can be proven analogously to the estimates (i.1), (ii.1), (iii.1) and
(iv.1) in the mono-atomic case using ξ instead of v.
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Concerning the integration we also replace v by ξ and consider the L1-norm with
the weight (1 + |ξ|2)dξdx = (1 + |v|2 + |η|2)dvdηdx in the following. Furthermore, in
the mono-atomic case we proved existence and uniqueness of mild solutions under
the assumptions 4.3.1. In the polyatomic case we also assume assumptions 1 to 7 in
4.3.1 with the new L1−norm and we make the following new assumptions.

Assumption 8.6.1. In the polyatomic case we make the following additional assump-
tions:

1.-7. We assume 1 to 7 in 4.3.1 with the L1−norm with the weight (1 + |ξ|2).

8. Additional initial values Θ0,Λ0 which satisfy condition (8.5) and are integrable
with respect to the space variable x ∈ Λpoly.

9. Assume that the relaxation parameter in front of (M̃ −M) in (8.6) is constant
and non-negative.

10. Assume (1− zr) ≥ c > 0 for a c ∈ R.

With this additional assumptions we obtain the following theorem in the poly-
atomic case for one species

Theorem 8.6.1. Under the assumptions 8.6.1 and the definitions (8.1) and (8.9), there
exists a unique non-negative mild solution f ∈ C(R+;L1((1 + |v|2)dvdx)) of the initial
value problem (8.2) for one species. Moreover, for all t > 0 the following bounds hold:

|u(t)|, T (t), Nq(f)(t) ≤ A(t) <∞,
n(t) ≥ C0e

−t > 0,

T (t) ≥ B(t) > 0,

for k = 1, 2 and some constants A(t), B(t).

Proof. The proof is analogue to the proof of theorem 4.3.6. We describe only the
main differences.

Step 1: As in the mono-atomic case we conclude that since f is a mild solution
according to the definition 8.6.1. Then we have

Nq(f) ≤ A0 +

∫ t

0

C sup
ξ
|ξ|qM(x, ξ, s)ds.

Then we use that M is also part of the solution according to definition 8.6.1. So we
take g from definition 8.6.1 and estimate g from below by cM . Then we use the mild
formulation for g given by the definition 8.6.1, and obtain the following inequality
for M

M(x, v, η, t) ≤ 1

c
[e−α̃(t)g0(x− vt, v, η)

+ e−α̃(t)

∫ t

0

ν̃zr(1− zr)M̃(x+ (s− t)v, v, η, s)eα̃(s)ds].
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We put this inequality into the previous equation. Then we can use (iv.1)∗ and
conclude as in step 1 of the mono-atomic case

Nq(f)(t) ≤ A0e
Cqt,

for q > N + 2 or q = 0.

Step 2-4: Step 2-4 can be proven analogously to the mono-atomic case.

Step 5: Here we prove Lipschitz continuity of the operator f 7→ M̃(f) when f
is restricted to the set

Ω={f∈L1(Λ×Rd×Rl;(1+|ξ|2)dξdx)|f≥0,Nq(f)<A,min(n,T,n,Θ,Λ,Trot,Ttrans)>C}. (8.60)

The proof of the Lipschitz continuity of M̃ [f ] differs from the Lipschitz continuity of
M in the mono-atomic case only in the fact that we will get terms with the global
equilibrium temperature TΘ instead of the single temperature T trans,θ. Nevertheless,
since we have estimates of the equilibrium temperature T in remark 8.6.1 the proof
is very similar to the mono-atomic case.

Step 6: We consider the sequence {(fk,Θk,Λk)} given by mild solutions to

∂tf
k + v · ∇xfk = ν̃(Mk−1|k−2 − fk),

∂tg
k−1|k−2 + v · ∇xgk−1|k−2 = zrν̃[(1− zr)M̃k−2 − gk−1|k−2],

d

2
nΛk−1 +

l

2
nΘk−2 =

d

2
nT transk−2 +

l

2
nT rotk−2,

f2 = f(0), Θ0 = Θ(0), k ≥ 2,

where the meaning of the notation k − 1|k − 2 is the following. We take the value
of Θk−2 but all the other functions have the index k − 1. For fixed k we obtain
inhomogeneous transport equations from which we know existence of unique mild
solutions in the periodic setting.

In the proof of the Cauchy sequence we obtain analogously as in the mono-atomic
case the following estimate

||fn − fn−1||L1((1+|ξ|2)dξdx)

≤ e−Ct
∫ t

0

eCs[||Mn−1|n−2(s)−Mn−2|n−3(s)||L1((1+|ξ|2)dξdx)ds,

from the first equation of (8.2) and

||Mn−1|n−2 −Mn−2|n−3||L1(1+|ξ|2)dξdx)

≤ e−Ct
∫ t

0

eCs[||M̃n−2(s)− M̃n−3(s)||L1((1+|ξ|2)dξdx)ds,

from the second equation of (8.2). In the second estimate we use Lipschitz continuity
of M̃ and combine both estimates. The rest is analogously to the mono-atomic
case.
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Remark 8.6.2 (Existence and uniqueness for the mixture BGK model for polyatomic
molecules). The proof of existence and uniqueness for the single polyatomic BGK
model can be extended for mixtures in an analogous way as in the case of mono-
atomic BGK model.

8.6.2 Positivity of solutions

Theorem 8.6.2. Let (f1, f2) be a mild solution to (8.2) - (8.22) under the modified
assumptions for existence and uniqueness described in the previous section with positive
initial data. Then the solution is positive meaning f1, f2 > 0.

Proof. The proof is exactly the same as in the case of the BGK model for mixtures,
see section 4.4.
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Chapter 9

Convergence to dissipative incompress-
ible Euler equations for two species
In chapter 7 we derived formally a hydrodynamic limit which will lead to the com-
pressible Navier-Stokes equations for two species. But this derivation was formal, we
did not prove convergence. To prove convergence to hydrodynamic limits from ki-
netic equations is a recent area of research. In the case of one species Saint-Raymond
proved the convergence to hydrodynamic limits of the BGK model for one species
to the incompressible Euler equations in [77] and the incompressible Navier-Stokes
equations in [78]. As far as we know, there is no result in the case of gas mixtures. In
this chapter we extend the limit to the incompressible Euler equations for one species
in [77] to the model described in chapter 2 in the case of gas mixtures.

9.1 The BGK approximation

We repeat the model from chapter 2 for the convenience of the reader. For simplicity
in the following we consider a mixture composed of two different species. Thus,
our kinetic model has two distribution functions f1(x, v, t) > 0 and f2(x, v, t) > 0
where x ∈ R3 and v ∈ R3 are the phase space variables and t ≥ 0 the time. For any
f1, f2 : Λ× R3 × R+

0 → R, Λ ⊂ R3 with (1 + |v|2)f1, (1 + |v|2)f2 ∈ L1(dv), f1, f2 ≥ 0
we relate the distribution functions to macroscopic quantities by mean-values of fk,
k = 1, 2 ∫

fk(v)

 1
v

mk|v − uk|2

 dv =:

 nk
nkuk
3nkTk

 , k = 1, 2, (9.1)

where nk is the number density, uk the mean velocity and Tk the temperature of
species k, k = 1, 2. Note that in this chapter we shall write Tk instead of kBTk, where
kB is Boltzmann’s constant.

We are interested in a BGK approximation of the interaction terms. Then the
model can be written as:

∂tf1 + v · ∇xf1 = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂tf2 + v · ∇xf2 = ν22n2(M2 − f2) + ν21n1(M21 − f2),

f1(t = 0) = f0
1 ,

f2(t = 0) = f0
2 ,

(9.2)
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9 Convergence to dissipative incompressible Euler equations for two species

with the Maxwell distributions

Mk(x, v, t) =
n1√

2π Tk
mk

3 exp

(
−|v − uk|

2

2 Tk
mk

)
, k = 1, 2

M12(x, v, t) =
n12√
2π T12

m1

3 exp

(
−|v − u12|2

2T12

m1

)
,

M21(x, v, t) =
n21√
2π T21

m2

3 exp

(
−|v − u21|2

2T21

m2

)
,

(9.3)

where ν11n1 and ν22n2 are the collision frequencies of the particles of each species
with itself, while ν12n2 and ν21n1 are related to interspecies collisions. To be flexible
in choosing the relationship between the collision frequencies, we now assume the
relationship

ν12 = εν21, 0 < ε ≤ 1. (9.4)

The restriction on ε is without loss of generality. If ε > 1, exchange the notation 1
and 2 and choose 1

ε as new ε. In addition, we assume that all collision frequencies
are positive. In order to ensure existence and uniqueness of solutions we assume the
following restrictions on our collision frequencies

νkj(x, t) =
ν̃kj

nk(x, t) + nj(x, t)
, k, j = 1, 2 (9.5)

with constants ν̃11, ν̃12, ν̃21, ν̃22 > 0.
With this choice of the Maxwell distributions M1 and M2 with the same densi-

ties, velocities and internal energies as f1 and f2, respectively, we guarantee the
conservation of mass, momentum and energy in interactions of one species with
itself. The remaining parameters n12, n21, u12, u21, T12 and T21 will be determined
using conservation of total momentum and energy, together with some symmetry
considerations.

If we assume that

n12 = n1 and n21 = n2, (9.6)

we have conservation of the number of particles. If we further assume that u12 is a
linear combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R, (9.7)

then we have conservation of total momentum provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1), (9.8)

and T12 and T21 given by (2.10) and (2.11).
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9.2 From the BGK equation for gas mixtures to incompressible dissipative Euler

9.2 From the BGK equation for gas mixtures to incompress-
ible dissipative Euler

First, we need some definitions concerning the equilibrium distribution and the
entropy.

Definition 9.2.1. We denote a Maxwell distribution with mass mk, zero mean
velocity and temperature 1 by

M̄k(v) =
1√

2π 1
mk

3 exp

(
−mk|v|2

2

)
, k = 1, 2.

For simplicity, we assume that both M̄1 and M̄2 have density 1, but it also would
be possible to choose different constant densities here.

Definition 9.2.2 (Relative entropy). Let f, f ′ be two distribution functions. Then,
we define the relative entropy of f and f ′ by

Hε(f |f ′) =
1

ε2

∫ ∫
[f ln

f

f ′
− f + f ′]dxdv for ε > 0,

and the local relative entropy of f and f ′ by

H̄ε(f |f ′) =
1

ε2

∫
[f ln

f

f ′
− f + f ′]dv for ε > 0.

Note that this is a more general definition of the relative entropy as in section 6.2.1.
This definition coincides with the definition in section 6.2.1 if the two distribution
functions have the same density and if we choose ε = 1.

In the following we denote by Mf the Maxwell distributions with the same
moments as the moments of a distribution function f .

Theorem 9.2.1. Let q > 1, T > 0 and u1
0, u

2
0 ∈ L2 ∩ L∞(R3) be two vector fields

with ∇x · u1
0 = ∇x · u2

0 = 0. Let (g1,0
ε ), (g2,0

ε ) be two families of functions bounded in
L2(R3 × R3, dxM̄1(v)dv) and L2(R3 × R3, dxM̄2(v)dv), respectively, such that

• 1 + εg1,0
ε ≥ 0, 1 + εg2,0

ε ≥ 0 for every ε > 0, (x, v) ∈ R3 × R3,

• Hε(M̄1(1 + εg1,0
ε )|M1,0

ε )→ 0, Hε(M̄2(1 + εg2,0
ε )|M2,0

ε )→ 0 for ε→ 0,

whereM1,0
ε ,M2,0

ε are local Maxwell distributions with massmk, density 1, mean velocity
εu1

0 and εu2
0, respectively, and temperature 1. Let (fε1 , f

ε
2 ) be a solution to

ε∂tf
ε
1 + v · ∇xfε1 = 1

εq (Mfε1
− fε1 ) + κ1(ε)(Mε

12 − fε1 ),

ε∂tf
ε
2 + v · ∇xfε2 = 1

εq (Mfε2
− fε2 ) + κ2(ε)(Mε

21 − fε2 ),

fε1 (0, x, v) = M̄1(1 + εg1,0
ε (x, v)),

fε2 (0, x, v) = M̄2(1 + εg2,0
ε (x, v)).
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9 Convergence to dissipative incompressible Euler equations for two species

Then, in the limit ε → 0, the part of 1
ε

∫
fε1vdv and 1

ε

∫
fε2vdv which is divergence-

free, converge in C0([0, T ],D′(R3)) to a solution of the dissipative incompressible Euler
equations for mixtures. We call two functions u1, u2 ∈ L∞(R+;L2(R3)) ∩ C0(R+, w −
L2(R3)) with divergence zero a solution to the dissipative incompressible Euler equations
if for all test functions w1, w2 ∈ C∞c ([0, T ]× R3) such that ∇x · w1 = ∇x · w2 = 0 and
for all t ∈ [0, T ] we have the inequalities∫

|w1 − u1|2(x, t)dx ≤
∫
|w1 − u1|(x, 0)dxe

∫ t
0
C||X(w1)(s)||∞ds

−2

∫ t

0

e
∫ t
τ
C||X(w1)(s)||∞ds

∫
E(w1) · (u1 − w1)dxdτ

−2

∫ t

o

e
∫ τ
0
C||X(w1)(s)||∞ds

∫
C(u2 − u1) · w1dxdτ,

∫
|w2 − u2|2(x, t)dx ≤

∫
|w2 − u2|(x, 0)dxe

∫ t
0
C||X(w2)(s)||∞ds

−2

∫ t

0

e
∫ t
τ
C||X(w2)(s)||∞ds

∫
E(w2) · (u2 − w2)dxdτ

−2

∫ t

0

e
∫ τ
0

2||X(w2)(s)||∞ds
∫
C(u1 − u2) · w1dxdτ,

if κ(ε)(1− δ(ε)) = 1
ε +O(ε), and∫

|w1 − u1|2(x, t)dx ≤
∫
|w1 − u1|(x, 0)dxe

∫ t
0
C||X(w1)(s)||∞ds

−2

∫ t

0

e
∫ t
τ
C||X(w1)(s)||∞ds

∫
E(w1) · (u1 − w1)dxdτ,

∫
|w2 − u2|2(x, t)dx ≤

∫
|w2 − u2|(x, 0)dxe

∫ t
0
C||X(w2)(s)||∞ds

−2

∫ t

0

e
∫ t
τ
C||X(w2)(s)||∞ds

∫
E(w2) · (u2 − w2)dxdτ,

if κ(ε)(1− δ(ε)) = O(ε), where the matrix X(w1) is given by

Xij(w1) =
1

2
(∂xiw1,j + ∂xjw1,i),

the dissipation is given by

E(wk) = ∂twk + P (wk · ∇xwk), k = 1, 2 (9.9)

with the Leray projection P on the divergence-free part (see appendix A.3 for the
existence), and corresponding equations for the second species. δ is the parameter in
(9.7). We allow a dependence of δ on ε here.
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9.3 Motivation of the dissipative incompressible Euler equations

The notation w − L2(R3) is explained in the appendix A.3. The non-negativity of
the terms 1 + εg1,0

ε , 1 + εg2,0
ε in the assumptions is to ensure non-negativity of the

initial data which leads to non-negative solutions for all later times.
The considered system of equations in this theorem is a non-dimensionalized

version of the model presented in chapter 2. It is derived in the case of electrons
and ions in section 6.1.4. The meaning of the system obtained in the limit will be
motivated in the next section.

9.3 Motivation of the dissipative incompressible Euler equa-
tions

We want to start with a motivation of the inequality in theorem 9.2.1 in the case of
one species. This motivation is also given in [8]. Let w(x, t) be a divergence-free
test function and E given by E(w) = ∂tw + P (w · ∇xw). Then for any smooth
divergence-free solution u(x, t) of the Euler equations one has

∂tu+∇x · (u⊗ u) +∇xp = 0,

∂tw +∇x · (w ⊗ w) +∇xp = E(w).

If we subtract the second equation from the first one and multiply the result by
(u− w), we obtain

d|u− w|2

dt
+ 2(u− w) · S(w) · (u− w) = 2E(w) · (u− w),

with S(w) = 1
2 (∇xw + (∇xw)T ). Duhamel’s formula leads to

|u− w|2 ≤ e
∫ t
0

2||S(w)(τ)||∞ds|u(0)− w(0)|2

+ 2

∫ t

0

e
∫ t
s

2||S(w)(s)||∞dτE(w)(s) · (u− w)(s)ds.
(9.10)

Definition 9.3.1. We call u ∈ L∞(R+;L2(R3))∩C0(R+;w−L2(R3)) with divergence
zero a dissipative solution of the incompressible Euler equations if (9.10) holds for
any smooth divergence-free vector field w ∈ C∞c ([0, T ]× R3) for almost all t ∈ [0, T ].

We have the following properties of dissipative solutions:

Theorem 9.3.1.

i) Any classical solution u of the incompressible Euler equations is a dissipative
solution.

ii) Every dissipative solution satisfies the energy inequality

|u(t)|2 ≤ |u(0)|2.
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9 Convergence to dissipative incompressible Euler equations for two species

iii) If w is a classical solution to the incompressible Euler equations and u is a dissipative
solution of the incompressible Euler equations, then

|u(t)− w(t)|2 ≤ e
∫ t
0

2||S(w)(s)||∞ds|u(0)− w(0)|2.

Proof. i) is a direct consequence by the construction. We get ii) if we consider w = 0
as classical solution. iii) follows from the fact that if w is a classical solution then
E(w) = 0.

The meaning of the theorem is the following. Property i) shows a relationship
between classical and dissipative solutions. Property ii) motivates the notation of
dissipative solutions. The kinetic energy of such a solution is dissipative. Property
iii) states that if there exists a classical solution to the Euler equations then every
dissipative solution with the same initial data coincides with this classical solution.

Now, we consider the two species case. Consider the functions u1, w1, u2, w2 :
R3 × [0, T ]→ R which satisfy the equations

∂tu1+∇x·(u1⊗u1)+∇xp1=C1(u2−u1),

∂tw1+∇x·(w1⊗w1)+∇xp1=C1(w2−w1)+E(w1)−C1(w2−w1)+Y1(u1,u2,w1),

∂tu2+∇x·(u2⊗u2)+∇xp2=C2(u1−u2),

∂tw2+∇x·(w2⊗w2)+∇xp2=C2(w1−w2)+E(w2)−C2(w1−w2)+Y2(u2,u1,w2),

(9.11)

where Y1 is a vector orthogonal to w1 and not orthogonal to u1. C1 is given by
Y1·u1

(u1−u2)·u1
. If w1 is parallel to u1, set Y1 = 0 and C1 = 1. If u1 = u2 or u1 = 0 set

C1 = 0.
Similar for the second species. Y2 is a vector orthogonal to w2 and not orthogonal

to u2. C2 is given by Y2·u2

(u2−u1)·u2
. If w2 is parallel to u2, set Y2 = 0 and C2 = 1. If

u1 = u2 or u2 = 0 set C2 = 0. We want to derive similar inequalities as in the one
species case. We show it only for species 1, the other species is analogue to the
derivation of the first one.

If we multiply the first two equations of equations (9.11) by u1 −w1 and subtract
the second equation from the first one, we obtain

∂t|u1 − w1|2 + 2(u1 − w1) ·X(w1) · (u1 − w1)

= 2C1(u2 − u1) · (u1 − w1)− 2C1(w2 − w1) · (u1 − w1)− 2E(w1) · (u1 − w1)

+ 2C1(w2 − w1) · (u1 − w1)− 2Y1(u1, u2, w1) · (u1 − w1).

Due to the properties of Y1, we have Y1 · w1 = 0 and Y1 · u1 = C1(u1 − u2) · u1 and
obtain

∂t|u1 − w1|2 + 2(u1 − w1) ·X(w1) · (u1 − w1)

= −2C1(u2 − u1) · w1 − 2C1(w2 − w1) · (u1 − w1)

− 2E(w1) · (u1 − w1) + 2C1(w2 − w1) · (u1 − w1).
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9.3 Motivation of the dissipative incompressible Euler equations

According to Duhamel’s formula, we obtain the following inequality∫
|w1 − u1|2(x, t)dx ≤

∫
|w1 − u1|(x, 0)dxe

∫ t
0

2||X(w1)(s)||∞ds

− 2

∫ t

0

e
∫ t
τ

2||X(w1)(s)||∞ds
∫
E(w1) · (u1 − w1)dxdτ

− 2

∫ t

0

e
∫ t
τ

2||X(w1)(s)||∞ds
∫
C1(u2 − u1) · w1dxdτ.

(9.12)

If we do the same for the second species, we obtain∫
|w2 − u2|2(x, t)dx ≤

∫
|w2 − u2|(x, 0)dxe

∫ t
0

2||X(w2)(s)||∞ds

− 2

∫ t

0

e
∫ t
τ

2||X(w2)(s)||∞ds
∫
E(w2) · (u2 − w2)dxdτ

− 2

∫ t

0

e
∫ t
τ

2||X(w2)(s)||∞ds
∫
C2(u1 − u2) · w2dxdτ.

(9.13)

For the second case in theorem 9.2.1 consider the equations

∂tuk +∇ · (uk ⊗ uk) +∇pk = 0,

∂twk +∇ · (wk ⊗ wk) +∇pk = E(wk), k = 1, 2,

and derive inequalities in the same way as in the previous case. We extend the
notion of dissipative solutions analogously as in definition 9.3.1. We observe that the
different choice of the dependence on ε is reflected in the appearance of an exchange
term between the two species. In the first case, we obtain equations where we have
an exchange term of momentum. In the second case, there is no exchange term of
the momentum. Then, in the case of mixtures we observe the following properties of
dissipative solutions.

Theorem 9.3.2.

i) Any classical solution satisfies the derived inequality for dissipative incompressible
Euler.

ii) We have
|uk(t)|2 ≤ |uk(0)|2, k = 1, 2,

which describes the dissipation of the kinetic energy.

iii) Let w1, w2 be classical solutions of the incompressible Euler equations with exchange
terms C1(u1 − u2) and C2(u2 − u1) with C1 = C2 for conservation of momentum.
Then u1 = w1 and u2 = w2 if the initial values of u1 and w1 and the initial values
of u2 and w2 coincide.
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9 Convergence to dissipative incompressible Euler equations for two species

Proof. i) is again true by construction. If we take w1 = w2 = 0, we obtain ii).
We prove iii) in the following way. If w1 and w2 are classical solutions to the
incompressible Euler equations with opposite exchange terms (C1 = C2), then

E(w1)− C1(w2 − w1) + Y1(u1, u2, w1) = 0,

E(w2)− C1(w1 − w2) + Y2(u2, u1, w2) = 0.
(9.14)

From the inequalities (9.12) and (9.13), we obtain by using (9.14) and the properties
of Y1 and Y2. ∫

|w1 − u1|2(x, t)dx ≤
∫
|w1 − u1|(x, 0)dxe

∫ t
0

2||X(w1)(s)||∞ds

−2

∫ t

0

e
∫ t
τ

2||X(w1)(s)||∞ds
∫
C1(u1 − u2 + w2 − w1) · (u1 − w1)dxdτ.

∫
|w2 − u2|2(x, t)dx ≤

∫
|w2 − u2|(x, 0)dxe

∫ t
0

2||X(w2)(s)||∞ds

−2

∫ t

0

e
∫ t
τ

2||X(w2)(s)||∞ds
∫
C1(u2 − u1 + w1 − w2) · (u2 − w2)dxdτ.

We estimate e
∫ t
τ

2||X(w1)(s)||∞ds, e
∫ t
τ

2||X(w2)(s)||∞ds from below by 1 if the integrand
is positive and by max{e

∫ t
τ

2||X(w1)(s)||∞ds, e
∫ t
τ

2||X(w2)(s)||∞ds} from above if the inte-
grand is negative. The two integrands have the same sign, since we have

(u2 − u1 + w1 − w2) · (u2 − w2) = |u2 − w2|2 + (w1 − u1) · (u2 − w2),

(u1 − u2 + w2 − w1) · (u1 − w1) = |u1 − w1|2 + (w2 − u2) · (u1 − w1).

So we denote the common estimate of e
∫ t
τ

2||X(w1)(s)||∞ds and e
∫ t
τ

2||X(w2)(s)||∞ds by
Ccom and add both inequalities∫

|w1 − u1|2(x, t)dx+

∫
|w2 − u2|2(x, t)dx

≤
∫
|w1 − u1|(x, 0)dxe

∫ t
0

2||X(w1)(s)||∞ds +

∫
|w2 − u2|(x, 0)dxe

∫ t
0

2||X(w2)(s)||∞ds

− 2

∫ t

0

Ccom(u1 − u2 + w2 − w1) · (u1 − w1 − u2 + w2)dxdτ

=

∫
|w1 − u1|(x, 0)dxe

∫ t
0

2||X(w1)(s)||∞ds +

∫
|w2 − u2|(x, 0)dxe

∫ t
0

2||X(w2)(s)||∞ds

− 2

∫ t

0

Ccom|u1 − u2 + w2 − w1|2dxdτ.

This is equivalent to∫
|w1 − u1|2(x, t)dx+

∫
|w2 − u2|2(x, t)dx+ 2

∫ t

0

∫
Ccom|u2 − u1 + w2 − w1|2dxdτ

≤
∫
|w1 − u1|(x, 0)dxe

∫ t
0 2||X(w1)(s)||∞ds +

∫
|w2 − u2|(x, 0)dxe

∫ t
0 2||X(w2)(s)||∞ds.
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Now, if u1 and u2 have the same initial data as w1 and w2, respectively, this leads to∫
|w1 − u1|2(x, t)dx+

∫
|w2 − u2|2(x, t)dx+ 2

∫ t

0

∫
Ccom|u2 − u1 + w2 − w1|2dxdτ ≤ 0,

which leads to w1 = u1 and w2 = u2. So for the same initial data, the solutions
coincide.

9.4 Estimates on the entropy and entropy dissipation for
gas mixtures

Lemma 9.4.1. Define Dε(f
ε
k) := 1

εq+3

∫ ∫
(Mfεk

− fεk) ln
(
fkε
M̄k

)
dxdv. With the re-

quirements of theorem 9.2.1, (Hε(f
ε
1 |M̄k))ε, (Hε(f

ε
2 |M̄k))ε, (Dε(f

ε
1 ))ε, (Dε(f

ε
2 ))ε are

uniformly bounded in L∞(R+) and L1(R+), respectively. Especially, in the limit ε→ 0,
(g1
ε)ε, (g2

ε)ε defined by fε1 = M̄1(1 + εg1
ε), fε2 = M̄2(1 + εg2

ε) are relatively compact in
w − L1

loc(dtdx;w − L1((1 + |v|2)dv)).

An explanation of the notation w−L1
loc(dtdx;w−L1((1 + |v|2)dv)) can be found

in appendix A.3.

Proof. For the time derivative of the entropy, we get in the weak sense

∂tH̄(fε1 |M̄1) = ∂t

[
1

ε2

∫
(fε1 ln

(
fε1
M̄1

)
− fε1 + M̄1)dv

]
=

1

ε2

∫
(∂tf

ε
1 ln

(
fε1
M̄1

)
+ ∂tf

ε
1 − ∂tfε1 + ∂tM̄1)dv

=
1

ε2

∫
∂tf

ε
1 ln

(
fε1
M̄1

)
dv

= − 1

ε3

∫
v · ∇xfε1 ln

(
fε1
M̄1

)
dv +

1

εq+3

∫
(Mfε1

− fε1 ) ln

(
fε1
M̄1

)
dv

+ κ1(ε)
1

ε3

∫
(Mε

12 − fε1 ) ln

(
fε1
M̄1

)
dv

=: − 1

ε3

∫
v · ∇xfε1 ln

(
fε1
M̄1

)
dv + D̄1,ε(f

ε
1 ) + D̄12,ε(f

ε
1 , f

ε
2 )

=: − 1

ε3

∫
v · ∇xfε1 ln

(
fε1
M̄1

)
dv + D̄ges

1,ε (fε1 , f
ε
2 ).

Now we integrate this equation with respect to x and t. Using appropriate boundary
conditions in x, we see with integration by parts and Gauß’s theorem that the first
term on the right-hand side vanishes and we obtain

Hε(f
1
ε |M̄1) +

∫ t

0

Dges
1,ε (f1

ε , f
2
ε )ds ≤ Hε(M̄1(1 + εg1,0

ε )|M̄1),
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9 Convergence to dissipative incompressible Euler equations for two species

with Dges
1,ε (f1

ε , f
2
ε ) =

∫
D̄ges

1,ε (f1
ε , f

2
ε )dx. In the same way, we can also show this

inequality for the second species

Hε(f
2
ε |M̄2) +

∫ t

0

Dges
2,ε (f1

ε , f
2
ε )ds ≤ Hε(M̄2(1 + εg2,0

ε )|M̄2).

Taking the sum of both, we obtain

Hε(f
1
ε |M̄1) +Hε(f

2
ε |M̄2) +

∫ t

0

(Dges
1,ε (f1

ε , f
2
ε ) +Dges

2,ε (f1
ε , f

2
ε ))ds

≤ Hε(M̄1(1 + εg1,0
ε )|M̄1) +Hε(M̄2(1 + εg2,0

ε )|M̄2).

(9.15)

According to the proof of lemma 2.1 in [77] Hε(M̄1(1 + εg1,0
ε )|M̄1) and

Hε(M̄2(1 + εg2,0
ε )|M̄2) are bounded by a term just depending on

Hε(M̄1(1 + εg1,0
ε )|M1,0

ε ) and Hε(M̄2(1 + εg2,0
ε )|M1,0

ε ), respectively. Therefore they
are uniformly bounded in L∞(R+) due to the assumptions on the initial data. By
definition, we have Hε(f

ε
1 |M̄1) ≥ 0 and Hε(f

ε
2 |M̄2) ≥ 0. Due to the H-theorem for

mixtures, we also know that D1,ε(f
ε
1 , f

ε
2 ) ≥ 0, D2,ε(f

ε
1 , f

ε
2 ) ≥ 0 and (D12,ε(f

ε
1 , f

ε
2 ) +

D21,ε(f
ε
1 , f

ε
2 )) ≥ 0. Here, the entropy dissipations without a bar are defined in the

same way as Dges
1,ε via integration with respect to x over the entropy dissipation

with a bar. Therefore, we can deduce from (9.15), that Hε(f
ε
1 |M̄1) and Hε(f

ε
2 |M̄2)

are uniformly bounded in L∞(R+), and D1,ε(f
ε
1 , f

ε
2 ) and D2,ε(f

ε
1 , f

ε
2 ) are uniformly

bounded in L1(R+). So we proved the first statement of the theorem. The proof of
the second statement is the same as in [77], lemma 2.1. The idea is to prove that
(g1
ε(1 + |v|2))ε, (g2

ε(1 + |v|2))ε are equi-integrable and conclude that it is relatively
compact in the weak topology with the theorem of Dunford-Pettis. For the definition
of equi-integrability and the theorem of Dunford-Pettis see appendix A.4. The
equi-integrability is shown in [77] in the following way. Let h∗ be the Legendre
transformation of h : z 7→ (1 + z) ln(1 + z)− z, see appendix A.2. Then one obtains
with Young’s inequality from appendix A.2

1

4
(1 + |v|2)|gkε | ≤

c

ε2
h∗
(
ε

c

1

4
(1 + |v|2)

)
+

c

ε2
h(εgkε ), c ∈ R, k = 1, 2.

From the Taylor series one can see that h∗ : p 7→ ep − p − 1 has the property that
h∗(λp) ≤ λ2h∗(p) for λ small enough, see appendix A.2. This leads to

1

4
(1 + |v|2)|gkε | ≤

1

α
h∗
(

1

4
(1 + |v|2)

)
+
α

ε2
h(εgε).

One can show that the integral of h(εgε)
ε2 with respect to (x, v) is bounded by a

constant, see the proof of lemma 2.1 in [77]. Then, if we multiply the inequality
by M̄k, integrate with respect to Ω such that

∫ ∫ ∫
1ΩM̄kdvdxdt ≤ δ̃2. Then choose

c = δ̃, one obtains ∫ ∫
Ω

∫
(1 + |v|2)|gkε |M̄kdvdxdt ≤ Kδ̃,

for all ε < δ̃.
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9.4 Estimates on the entropy and entropy dissipation for gas mixtures

Remark 9.4.1. The sum of the entropies is also uniformly bounded. Therefore it
exists a convergent subsequence for the sum. Therefore we can find a common
sequence going to zero for both single entropies.

Lemma 9.4.2. Let w1, w2 be two vector fields on R3× [0, T ] with∇x ·w1 = ∇x ·w2 = 0
and Mw1

ε ,Mw2
ε Maxwell distributions with mass mk, density 1, velocity εw1 and εw2,

respectively, and temperature 1. With the requirements of theorem 9.2.1, there exist
π1, π2 : R3 × [0, T ]→ R such that

Hε(f
ε
1 |Mw1

ε )(t)−Hε(M̄1(1 + εg1,0
ε )|Mw1,0

ε )

≤ − 1

ε2

∫ t

0

∫ ∫
(v − εw1) · ∇xw1 f

ε
1 (x, v, s)dxdvds

− 1

ε

∫ t

0

∫ ∫
(E(w1) +∇xπ1)(s, x) · (v − εw1(x, s))fε1 (x, v, s)dxdvds

− κ(ε)

∫ t

0

∫
ρ1,ε(1− δ)(uε2 − uε1) · w1dxds,

Hε(f
ε
2 |Mw2

ε )(t)−Hε(M̄2(1 + εg2,0
ε )|Mw2,0

ε )

≤ − 1

ε2

∫ t

0

∫ ∫
(v − εw2) · ∇xw2 f

ε
2 (s, x, v)dxdvds

− 1

ε

∫ t

0

∫ ∫
(E(w2) +∇xπ2)(x, s) · (v − εw1(x, s))fε2 (x, v, s)dxdvds

− κ(ε)

∫ t

0

∫
ρ2,ε(1− δ)(uε1 − uε2) · w2dxds.

Proof. We prove only the estimate for species 1, the other one is the same exchanging
the indices 1 and 2.
The H-theorem leads to a decrease of the total entropy

Hε(f
ε
1 |M̄1) +Hε(f

ε
2 |M̄2) ≤ H1

ε (M̄1(1 + εg1,0
ε )|M̄1) +H2

ε (M̄2(1 + εg2,0
ε )|M̄2),

or, since Hε(f
ε
1 |M̄1), Hε(f

ε
2 |M̄2) ≥ 0,

Hε(f
ε
1 |M̄1) ≤ H1

ε (M̄1(1 + εg1,0
ε )|M̄1) +H2

ε (M̄2(1 + εg2,0
ε )|M̄2).

A calculation shows

Hε(f
ε
1 |Mw1

ε ) = Hε(f
ε
1 |M̄1) +

1

ε2

∫ ∫
fε1 ln

(
M̄1

Mw1
ε

)
dxdv +

1

ε2

∫ ∫
(Mw1

ε − M̄1)dxdv

= Hε(f
ε
1 |M̄1) +

1

ε2

∫ ∫
fε1 ln

(
M̄1

Mw1
ε

)
dxdv,

since Mw1
ε and M̄1 have the same density. We can compute the second term on the

right-hand side and obtain∫ ∫
fε1 ln

(
M̄1

Mw1
ε

)
dxdv =

1

2

∫ ∫
fε1 (ε2w2

1 − 2εv · w1)dxdv.
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9 Convergence to dissipative incompressible Euler equations for two species

Then after differentiating and integrating in time, we use

Hε(f
ε
1 |M̄1) ≤ Hε(f

ε
1 (0)|M̄1(0))

and get

Hε(f
ε
1 |Mw1

ε )−Hε(M̄1(1 + εg1,0
ε )|Mw1

ε (0)) ≤
1

2ε2

∫ t

0

d

ds

∫ ∫
fε1 (ε2w2

1 − 2v · εw1)dxdvds

=
1

2ε2

∫ t

0

∫ ∫
∂sf

ε
1 (ε2w2

1 − 2v · εw1)dxdvds+
1

2ε2

∫ t

0

∫ ∫
fε1∂s(ε

2w2
1 − 2v · εw1)dxdvds

=
1

2ε

∫ t

0

∫ ∫
(−

v

ε
· ∇xfε1 +

1

εq+1
(Mfε1

− fε1 ) + κ1(ε)(Mε
12 − fε1 ))(ε2w2

1 − 2v · εw1)dxdvds

+
1

2ε

∫ t

0

∫ ∫
fε1 (εw1 − v) · ∂tw1dxdvds

= −
1

2ε2

∫ t

0

∫ ∫
v · ∇xfε1 (ε2w2

1 − 2v · εw1)dxdvds+
1

2ε

∫ t

0

∫ ∫
fε1 (εw1 − v) · ∂tw1dxdvds

−
κ1(ε)

2ε

∫ t

0

∫ ∫
(Mε

12 − fε1 )2v · εw1dxdvds,

since fε1 , Mfε1
and Mε

12 have the same density. In the third term we carry out the
integration with respect to v and use the expressions (9.1) and (9.7). So, all in all,
we obtain

Hε(f
1
ε |Mw1

ε )−Hε(M̄k(1 + εg1,0
ε )|Mw1

ε (0))

≤ − 1

ε2

∫ t

0

∫ ∫
(v − εw1) · ∇xw1 f

1
ε dxdvds

+
1

ε

∫ t

0

∫ ∫
f1
ε (εw1 − v) · (∂tw1 + w1 · ∇xw1)dxdvds

− κ1(ε)

∫ t

0

∫
ρ1,ε(1− δ)(uε2 − uε1) · w1dxds.

According to the Leray projection (see appendix A.3), it exists a π1 such that

w1 · ∇xw1 − P (w1 · ∇xw1) = ∇xπ1.

By using the definition of E given by (9.9) we obtain the result.

Lemma 9.4.3. Let w1, w2 be smooth vector fields on R3×[0, T ] with∇x ·w1 = ∇x ·w2 =
0 and Mw1

ε ,Mw2
ε Maxwell distributions with mass mk, density 1, velocity εw1 and εw2,

respectively and temperature 1. With the requirements of theorem 9.2.1, we have∣∣∣∣ 1

ε2

∫ ∫
(v − εw1) · ∇xw1 f

ε
1 (x, v, t)dxdv

∣∣∣∣
≤ C||X(w1)(t)||L∞(R3)Hε(f

ε
1 |Mw1

ε )(t) + ε
q−1

2 ||X(w1)(t)||L∞(R3)D
1
ε(f

ε
1 )(t)

+ Cε
q−1

2 ||X(w1)(t)||L1(R3),
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9.5 Proof of theorem 9.2.1 for mixtures

∣∣∣∣ 1

ε2

∫ ∫
(v − εw2) · ∇xw2 f

ε
1 (x, v, t)dxdv

∣∣∣∣
≤ C||X(w2)(t)||L∞(R3)Hε(f

ε
1 |Mw2

ε )(t) + ε
q−1

2 ||X(w2)(t)||L∞(R3)D
1
ε(f

ε
1 )(t)

+ Cε
q−1

2 ||X(w2)(t)||L1(R3).

Proof. By a computation one can relate the term (v− εwk) ·wk, k = 1, 2 with X(wk).
This is done in the end of the proof of lemma 3.1 in [77]. Then the estimate is proven
in [77], lemma 4.1.

Lemma 9.4.4. Let w1, w2 be smooth vector fields on R3 × [0, T ] with ∇x · w1 =
∇x · w2 = 0. With the requirements of theorem 9.2.1, there exist (εn)n with εn → 0
and u1, u2 ∈ L∞(R+, L2(R3)) with ∇x · u1 = ∇x · u2 = 0 such that

1

εn

∫ ∫
[∂tw1 + w1 · ∇xw1](x, t) · (v − εnw1(t, x))fεn1 (x, v, t)dxdv,

and
1

εn

∫ ∫
[∂tw2 + w2 · ∇xw2](x, t) · (v − εnw2(x, t))fεn2 (x, v, t)dxdv,

converge in L1
loc(R+) weakly to∫

[∂tw1 + w1 · ∇xw1](x, t) · [u1 − w1](x, t)dx,

respective ∫
[∂tw2 + w2 · ∇xw2](x, t) · [u2 − w2](x, t)dx.

Proof. The proof is given in [77], lemma 4.2.

9.5 Proof of theorem 9.2.1 for mixtures

Let w1 be a smooth vector field on R3 × [0, T ] with ∇x · w1 = 0. According to the
proof of lemma 9.4.2, we have

Hε(f
ε
1 |Mw1

ε )(t) = Hε(f
ε
1 |M̄1) +

1

2ε2

∫ ∫
fε1 (ε2w2

1 − 2εw1 · v)dxdv.

Using the ansatz fε1 = M̄1(1 + εg1
ε), we obtain

Hε(f
ε
1 |Mw1

ε )(t) = Hε(f
ε
1 |M̄1) +

1

2

∫
w2

1(x, t)dx

+
1

2

∫ ∫
M̄1g

1
ε(x, v, t)w1 · (εw1(x, t)− 2v)dvdx.

(9.16)
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9 Convergence to dissipative incompressible Euler equations for two species

According to lemma 9.4.1 Hε(f
ε
1 |M̄1) is uniformly bounded in L∞([0, T ]) and there-

fore with (9.16) we get that Hε(f
ε
1 |Mw1

ε ) is also uniformly bounded in L∞([0, T ]).
Since L1([0, T ]) is separable, we can apply the theorem of Banach-Alaoglu (see
appendix A.4) and obtain that there exists a sequence εn → 0 and a function
Hw1 ∈ L∞([0, T ]) such that

Hεn(fεn1 |Mw1
εn )→ Hw1 in L∞([0, T ]) weak*.

According to lemma 9.4.2, we have

Hε(f
ε
1 |Mw1

ε )(t)−Hε(f
ε
1 |Mw1

ε )(0)

≤ − 1

ε2

∫ t

0

∫ ∫
(v − εw1) · ∇xw1 f

ε
1 (x, v, s)dxdvds

− 1

ε

∫ t

0

∫ ∫
(E(w1) +∇xπ)(x, s) · (v − εw1(x, s))fε1 (x, v, s)dxdvds

− κ(ε)

∫ t

0

∫
ρ1,ε(1− δ)(uε2 − uε1) · w1dx.

According to lemma 9.4.3, we get

Hε(f
ε
1 |Mw1

ε )(t)−Hε(f
ε
1 |Mw1

ε )(0) ≤ C
∫ t

0

||X(w1)(s)||L∞(R3)Hε(f
ε
1 |Mw1

ε )(s)ds

+ ε
q−1

2

∫ t

0

[||X(w1)(t)||L∞(R3)D
1
ε(f

ε
1 )(s) + C||X(w1)(s)||L1(R3)]ds

− 1

ε

∫ t

0

∫ ∫
(E(w1) +∇xπ)(x, s) · (v − εw1(x, s))fε1 (x, v, s)dxdvds

− κ(ε)

∫ t

0

∫
ρ1,ε(1− δ)(uε2 − uε1) · w1dxds.

According to lemma 9.4.4, it exists a subsequence εn → 0 such that in the limit

Hw1(t)−Hw1(0) ≤ C
∫ t

0

||X(w1)(s)||L∞(R3)H
w1(s)ds

−
∫ t

0

∫
[∂tw1 + w1 · ∇xw1](t, x) · [u1 − w1](x, s)dxds

−

{
0 if κ(ε)(1− δ(ε)) = O(ε)∫ t

0

∫
ρ1(u2 − u1) · w1dxds if κ(ε)(1− δ(ε)) = 1

ε +O(ε).
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9.5 Proof of theorem 9.2.1 for mixtures

Analogue to the proof of theorem 1 in [77], we conclude using Gronwall’s inequality
and relating the difference of the entropy to the difference of the velocities |u1(x, t)−
w1(x, t)|. See the proof of theorem 1 in [77] for details.∫

|u1(x, t)− w1(x, t)|2dx ≤
∫
|u1

0(x)− w1(x, 0)|2dxe
∫ t
0
C||X(w1)(τ)||L∞(R3)dτ

−
∫ t

0

e
∫ t
s
C||X(w1)(τ)||L∞(R3)dτ

∫
E(w1)(x, s) · [u1 − w1](x, s)dxds

−
∫ t

0

e
∫ t
s
C||X(w1)(τ)||L∞(R3)dτ

{
0∫
ρ1(u2 − u1) · w1dx

ds,

depending on δ and κ. If we choose

κ(ε)(1− δ(ε)) =
1

ε
+O(ε),

then in the limit we obtain an exchange term for the velocities. If

κ(ε)(1− δ(ε)) = O(ε),

there is no exchange term. Similar for species 2.

209





Appendix A

A.1 Elementary equalities and inequalities

We start with an equality for computing a double cross product. It can be found in
section 5.2 in Fischer [42].

Theorem A.1.1 (Grassmann’s identity). Let a, b, c be three vectors in R3. Then we
have

a× (b× c) = (a · c)b− (a · b)c.

We continue with some inequality used in this thesis. The first inequality is
Hölder’s inequality. The proof can be found for example in theorem 4.4 in volume 2
of [33].

Theorem A.1.2 (Hölder’s inequality). Assume 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1 and let U be
an open subset of Rn. Let u∞ : U → R+ be a strictly positive probability density on U .
Then if u ∈ Lp(u∞dx), v ∈ Lq(u∞dx), we have∫

U

|uv|u∞dx ≤ ||u||Lp(u∞dx)||v||Lq(u∞dx).

The next inequality is the inequality of Gronwall. The proof can be found for
example in theorem 6.21 in Eck, Garcke, Knabner [38].

Theorem A.1.3 (Gronwall’s inequality). Let a > 0, h,Φ ∈ C0([0, a],R). Let h ≥
0, β ∈ R and assume

Φ(t) ≤ β +

∫ t

0

Φ(s)h(s)ds,

for all t ∈ [0, a]. Then we have

Φ(t) ≤ βe
∫ t
0
h(s)ds,

for all t ∈ [0, a].

The next inequality is an inequality which relates the norm of a probability density
to an entropy.

Theorem A.1.4 (Ciszar-Kullback inequality). Let Ω ⊂ Rd and u∞ : Ω → R+ be a
strictly positive probability density on Ω. Assume that φ : R+ → R is a smooth and
strictly convex function with φ′′(1) ≥ c > 0 for all 0 ≤ x ≤ 1. For the relative entropy
functional

Hφ[u] :=

∫
Ω

φ

(
u

u∞

)
u∞dx,
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the following inequality holds

||u− u∞||L1(Ω) ≤ C(Hφ[u]−Hφ[u∞])
1
2 ,

for all probability densities u ∈ P(Ω).

Proof. The proof is given in Matthes, [66]. For the convenience of the reader we
want to repeat it here. Since φ is assumed to be smooth, we can write the Taylor
expansion of φ as

φ(s) = φ(1) + φ′(1)(s− 1) +
φ′′(τ)

2
(1− s)2,

for s > 0 and τ between s and 1. Since φ is convex with φ′′(x) ≥ 2c > 0 for all
x ∈ [0, 1], we obtain

φ(s)− φ(1) ≥ φ′(1)(s− 1) + c(1− s)21{s<1},

for all s > 0. Since u∞(x)dx defines a probability measure on Ω, we have

Hφ[u]−Hφ[u∞] =

∫
Ω

(
φ

(
u

u∞

)
− φ(1)

)
u∞dx

≥ φ′(1)

∫
Ω

(u− u∞)dx+ c

∫
u<u∞

(
u

u∞
− 1

)2

u∞dx.

(A.1)

The integral
∫

Ω
(u − u∞)dx vanishes because udx and u∞dx are both probability

measures meaning the integrals of both functions are 1. So (A.1) reduces to

Hφ[u]−Hφ[u∞] ≥ c
∫
u<u∞

(
u

u∞
− 1

)2

u∞dx. (A.2)

Another consequence for probability measures is that

||u− u∞||L1(Ω) = 2

∫
u<u∞

|u− u∞|dx = 2

∫
u<u∞

u∞

∣∣∣∣ uu∞ − 1

∣∣∣∣ dx
≤ 2

(∫
u<u∞

(
u

u∞
− 1

)2

u∞dx

) 1
2

.

(A.3)

The last inequaltity uses the Hölder inequality for the functions
√
u∞ and

√
u∞| uu∞ −

1|. A combination of (A.2) and (A.3) leads to the result.

The next inequality is the inequality of the arithmetic and geometric means. It
can be found for example in example 11.30 in volume 1 of Denk, Racke[33].

Theorem A.1.5 (Inequality of arithmetic and geometric means). For any list of n
non-negative real numbers x1, x2, . . . , xn, we have

x1 + x2 + · · ·+ xn
n

≥ n
√
x1 · x2 · · · · · xn,

and with equality if and only if x1 = x2 = · · · = xn.
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A.2 Transforms

A.2 Transforms

In this section we want to repeat the most important things on Fourier and Laplace
transform. We start with the definition of the Fourier transform.

Definition A.2.1. For any f ∈ L1(Rn), we call the function Ff : Rn → C with

Ff(ω) :=
1
√

2π
n

∫
Rn
f(x)e−iω·xdx, ω ∈ Rn,

the Fourier transform of f .

This definition and the following property of the Fourier transform are given in
definition 23.2 and remark 23.4 in volume 2 of Denk, Racke [33].

Theorem A.2.1 (Plancherel). We have

〈f, g〉L2(Rn) = 〈Ff,Fg〉L2(Rn)

for all f, g ∈ L2(Rn). Especially, we have

||Ff ||2 = ||f ||2

for all f ∈ L2(Rn).

Now, we give an overview on the Laplace transform. This overview is also given
in chapter 8 in Blatter [19]. We consider functions f : R→ C with the properties

i) f(t) = 0 if t < 0.

ii) It exists α ∈ R and c > 0 such that

|f(t)| ≤ Ceαt for t ∈ R.

iii) f is integrable.

We denote the space of functions f with this properties by E and introduce the
variable s = x+ iy.

Definition A.2.2. We define the Laplace transform Lf for a function f ∈ E in the
right half-plane by

Lf(s) :=

∫ ∞
0

f(t)e−stdt for Re(s) > αf .

Lemma A.2.2. Let f ∈ E, then Lf is well-defined in P := {s|Re(s) > αf} and we
have

lim
Re(s)→∞

Lf(s) = 0.
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Proof. The proof is given in [19]. For the convenience of the reader, we want to
repeat it here. Consider a point s0 = x0 + iy0 ∈ P. Since x0 > αf , there exist α < x0

and C such that
|f(t)| ≤ Ceαt.

Therefore
|f(t)e−s0t| = |f(t)|e−x0t ≤ Ce(α−x0)t.

Since α−x0 < 0, the function f(t)e−s0t is exponentially decreasing and the existence
of Lf(s0) is ensured and we have

|Lf(s0)| ≤
∫ ∞

0

Ce(α−x0)tdt =
C

x0 − α
,

and therefore
lim

Re(s)→∞
Lf(s) = 0.

The last transform we want to mention is the Legendre transform. We present the
construction of the Legendre transform presented in chapter 14 C in Arnold [5] and
some properties presented in section 3.1 in Saint-Raymond [78].

Definition A.2.3 (Legendre transform). Let h(z) be a strictly convex twice differ-
entiable function. Then the Legendre transform of h is a new function h∗ of a new
variable p which is constructed in the following way. Let p be a given number. Con-
sider the straight line y = px in x− y−space. We take the point at which the curve
belonging to the graph of h has the largest distance from the straight line in the
vertical direction. The vertical distance is given by

H(p, z) = pz − h(z).

For each p the function H has a maximum with respect to z at z(p) since h is convex.
The point x(p) is defined by the extremal condition

∂H

∂z
(p, z) = 0,

which is equivalent to h′(z) = p. Since h is convex, the point z(p) is unique. Now
define

h∗(p) = H(p, z(p)).

We call this function h∗ Legendre transform.

Lemma A.2.3 (Young’s inequality). Let h∗(p) the Legendre transform of a convex twice
differentiable function h(z), then we have

pz ≤ h∗(p) + h(z)

for all p and z.
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A.3 Functional spaces

Proof. Since h∗(p) is defined as the maximum of the function H(p, z) = pz − h(z) in
z(p), we have

pz − h(z) ≤ h∗(p)

for all p and z.

Example A.2.1. Consider the function h(z) = (1+z) ln(1+z)−z. Then the Legendre
transform of h∗ is given by h∗(p) = ep− p− 1. Furthermore, h and h∗ in this example
satisfy

h∗(λp) ≤ λ2h∗(p) for all p ≥ 0, λ ∈ [0, 1], (A.4)

h(|z|) ≤ h(z) for all z > −1, (A.5)

p|z| ≤ λh∗(p) +
1

λ
h(z) for all p ≥ 0, z ≥ −1, λ ∈ (0, 1]. (A.6)

Proof. This example is presented in [78]. Consider the function

H(p, z) = pz − h(z) = pz − (z + 1) ln(1 + z) + z.

Then the maximum is determined by

∂H

∂z
(p, z) = p− ln(1 + z) = 0,

which is equivalent to z = ep − 1. Therefore h∗ is given by

h∗(p) = H(p, z(p)) = ep − p− 1.

Then (A.4) follows from the Taylor expansion of h∗ in the following way

h∗(λp) = eλp − λp− 1 =

∞∑
k=2

(λp)k

k!
≤ λ2

∞∑
k=2

pk

k!
= λ2h∗(p)

for λ ∈ (0, 1]. The inequality (A.5) follows from the Taylor expansion of h for z > −1.
The inequality (A.6) can be deduced using (A.4), (A.5) and Young’s inequality

λh∗(p) +
1

λ
h(z) ≥ 1

λ
h∗(λp) +

1

λ
h(|z|) ≥ 1

λ
λp|z|.

A.3 Functional spaces

In this section we present some definitions from the area of functional analysis. We
define some functional spaces, also presented in the appendix A of Bardos, Golse and
Levermore [7], and the projection onto divergence-free functions, also presented in
Majda, Bertozzi and Ogawa [65].
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Appendix A

Definition A.3.1. Let E be a normed linear space with norm || · ||E and dual space
E∗. With w−E we denote the space E equipped with its weak topology which is the
coarsest topology on E for which each of the linear forms u 7→ 〈w;u〉E∗,E for w ∈ E∗
is continuous.

Definition A.3.2. Let X be a locally compact topological space and E a normed
linear space. Then C0(X;w − E) denotes the space of continuous functions from X
to w − E which is the set of functions u for which x 7→ 〈w;u(x)〉E∗,E is in C0(X) for
each w ∈ E∗.
Definition A.3.3. Let X be a locally compact topological space and E a normed
linear space. Then L1

loc(X;w − E) denotes the space of L1
loc functions from X to

w − E which is the set of functions u for which x 7→ 〈w;u(x)〉E∗,E is in L1
loc(X) for

each w ∈ E∗.
Theorem A.3.1 (Leray projection). Every vector field v in the Sobolev space
Hm(RN ;Rd), m ∈ N0 has the unique orthogonal projection

v = w +∇φ,

with w,∇φ ∈ Hm(RN ;Rd). The operator P which projects on the divergence-free
functions Pv = w is called the Leray projection.

Proof. The proof is similar to the proof of the existence of the Hodge decomposition
in L2(RN ) ∩ C∞(RN ). One can deduce that φ has to satisfy a Poisson equation,
construct the unique solution and compute w as w = v −∇φ, see Proposition 1.16
and lemma 3.6 in [65].

A.4 Compactness arguments in the weak and weak* topol-
ogy

In this section, we present the theorem of Banach-Alaoglu, the notion of equi-
integrability and the theorem of Dunford-Pettis. This is taken from Bell [10].

Theorem A.4.1 (Banach-Alaoglu). Let E be a normed space and E∗ its dual space with
the operator norm. Then the set B̄E∗ = {T ∈ E∗, ||T || ≤ 1} is compact in the weak*
topology. Furthermore, if E is a separable Banach space, then any bounded sequence in
E∗ has a weak* converging subsequence.

Definition A.4.1 (Equi-integrability). Let (X,Σ, µ) be a probability space and let F
be a subset of L1(µ). We say that F is equi-integrable if for every ε > 0 there is some
δ > 0 such that for any A ∈ Σ with µ(A) ≤ δ and for all f ∈ F∫

A

|f |dµ ≤ ε.

Theorem A.4.2 (Dunford-Pettis). Suppose that (X,Σ, µ) is a probability space and
that F is a bounded subset of L1(µ). Then F is equi-integrable if and only if F is a
relatively compact subset of L1(µ) in the weak topology.
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